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Edison de Paula gametophyte (E-gy). Winter (WIN), Spring (SPR), Summer (SUM), Autumn 

(AUT). Different letters represent significant differences among growth cycles or months (Two-

way ANOVA, Tukey´s multiple comparison test, p < 0.05). 

Fig 3–10: Total soluble protein concentrations (mean ± SD, n=4) of Kappaphycus alvarezii strains 

cultivated in Ubatuba bay for 45 day-growth cycle in each season.  The blue columns represent 

the averages of the four strains together since there were no significant differences among them. 

Brown tetrasporophyte (T-br); Pale-brown Edison de Paula gametophyte (E-br); Light-green 

Edison de Paula gametophyte (E-lg); Greenish-yellow Edison de Paula gametophyte (E-gy). 

Seasons: Winter (WIN), Spring (SPR), Summer (SUM), Autumn (AUT). Different letters 

represent significant differences among seasons (Two-way ANOVA, Tukey´s multiple comparison 

test, p < 0.05). 
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Figure 4-3: Variation of Temperature (a), Water Transparency (b), and Salinity (c) at the 

Kappaphycus alvarezii cultivation site in Ubatuba Bay. Data represent means ± standard deviation 

(n = 24) recorded over 45 days during the four climatic seasons throughout the year. 1 (Winter): 
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March/2023, and 4 (Autumn): May-June/2023. Different letters represent significant differences 

among growth cycles or months (one-way ANOVA, Tukey´s multiple comparison test, p < 0.05). 

Figure 4-4: Productivity of Kappaphycus alvarezii color strains cultivated in Ubatuba bay, from 

August/2022 to August/2023, comprising four 45-day growth cycles interspersed with sample 

collections every two cycles (Mean ± SD, n = 20). Brown tetrasporophyte (T-br); Pale-brown 
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yellow Edison de Paula gametophyte (E-gy). Growth cycle 1: August-September/2022 (Winter), 
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green Edison de Paula gametophyte (E-lg); Greenish-yellow Edison de Paula gametophyte (E-gy). 
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February-March/2023, 4 (Autumn): May-June/2023. Bars, standard deviation of the means (SD). 
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Different letters represent significant differences among seasons (Two-way ANOVA, Tukey´s 

multiple comparison test, p < 0.05). 

Figure 4-7: Carrageenan contents (mean ± SD, n=3) of Kappaphycus alvarezii strains cultivated 

in Ubatuba bay for 45 day-growth cycle in each season. The blue columns represent the averages 

of the four strains together since there were no significant differences among them. Brown 

tetrasporophyte (T-br); Pale-brown Edison de Paula gametophyte (E-br); Light-green Edison de 

Paula gametophyte (E-lg); Greenish-yellow Edison de Paula gametophyte (E-gy). Winter (August-

September/2022), Spring (November-December/2022), Summer (February-March/2023), Autumn 

(May-June/2023). Bars, standard deviation of the means (SD). Different letters represent 

significant differences among seasons (Two-way ANOVA, Tukey´s multiple comparison test, p < 
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significant differences among seasons (Two-way ANOVA, Tukey´s multiple comparison test, p < 

0.05). 
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Edison de Paula (E-br), Light-green Edison de Paula (E-lg), Greenish-yellow Edison de Paula (E-

gy).  Growth cycles (cycle 1: August-September/2022, cycle 2: November-December/2022, cycle 

3: February-March/2023, cycle 4: May-June/2023 of K. alvarezii cultivated in Ubatuba Bay. 

Table 4-4: Pearson correlation analysis of the parameters (Temperature, Salinity, Water 

Transparency, Productivity, Total Carbohydrates, and Carrageenan). Brown tetrasporophyte (T-

br); Pale-brown Edison de Paula (E-br); Light-green Edison de Paula (E-lg); Greenish-yellow 

Edison de Paula (E-gy). Growth cycles (cycle 1: August-September/2022, cycle 2: November-

December/2022, cycle 3: February-March/2023, cycle 4: May-June/2023 of K. alvarezii cultivated 

in Ubatuba Bay. 
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RESUMO  

A macroalga marinha Kappaphycus alvarezii (Doty) L.M. Liao (Rhodophyta, Gigartinales) 

é um importante recurso marinho para a produção comercial de carragenana (polissacarídeo 

sulfatado), que é utilizada nos setores alimentício, cosmético e farmacêutico. Nas regiões Sul e 

Sudeste do Brasil, cultivo de K. alvarezii demonstra elevado potencial para a geração de renda e o 

fortalecimento da economia local. Há 30 anos, os cultivos experimentais vêm sendo conduzidos 

na Fazenda Marinha Experimental do Instituto de Pesca (EMFFI), Enseada de Ubatuba, no estado 

de São Paulo, enquanto iniciativas comerciais têm se expandido no sul do Rio de Janeiro e em 

Santa Catarina. Na EMFFI, foram identificadas linhagens espontâneas com distintas colorações, 

originadas do gametófito marrom-claro “Edison de Paula – EP”, cuja caracterização permanece 

limitada. Este trabalho teve como objetivo avaliar o crescimento, produtividade, parâmetros 

fotossintetizantes, variáveis bioquímicas (pigmentos, proteínas e carboidratos) e rendimentos da 

carragenana (teores de 3,6-anidrogalactose e de sulfatos) de quatro linhagens: três gametófitos EP; 

marrom-claro (E-br), verde-claro (E-lg) e amarelo-esverdeado (E-gy), e o tetrasporófito marrom 

(T-br), que originou o gametófico EP marrom-claro. Amostras (n = 20) de cada linhagem foram 

coletadas ao final de cada ciclo de crescimento de 45 dias, ao longo de um ano, em balsa flutuante 

instalada no ambiente marinho. Os fatores abióticos, incluindo temperatura, salinidade, 

transparência da água e índices pluviométricos foram monitorados regularmente no entorno da 

área de cultivo. Inicialmente o estudo identificou que o "efeito de borda" do desenho experimental 

proposto impactou negativamente as taxas de crescimento, sendo mitigado por um novo arranjo 

metodológico fundamentado em estatística e controle experimental. Diversos fatores interativos, 

exógenos e endógenos, determinaram os padrões de sazonalidade, impactando diretamente a taxa 

de crescimento e produtividade, que foi maior durante o verão. Nesse período, observou-se uma 

redução nos níveis de proteínas solúveis totais e um aumento nos carotenoides totais, sugerindo 

adaptações fotoprotetoras. No inverno, os teores de carragenana foram mais elevados. 

Adicionalmente, nossos resultados destacam a influência da ploidia na determinação das respostas 

fisiológicas, com maiores quantidades de ficobiliproteínas observadas no tetrasporófito, sugerindo 

sua influência nas maiores taxas de crescimento e refletindo para o aumento de produtividade. 

Ademais, os resultados apontam que as linhagens E-lg e E-gy apresentam maior similaridade entre 

si do que com a linhagem E-br (gametófito genitor), destacando-se que a linhagem E-gy apresenta 

maior eficiência fotossintetizante. Por outro lado, E-lg apresentou menores taxas de crescimento e 

concentrações de ficoeritrina. Surpreendentemente, os rendimentos de carragenana e conteúdo de 

sulfatos foram similares entre as linhagens, e variaram sazonalmente. Os resultados obtidos 



xiii 
 

evidenciam a importância de integrar fatores genéticos, fisiológicos e sazonais no manejo 

sustentável de K. alvarezii.  

 

Palavras-chave: Algicultura, Carragenana, Gametófitos, Pigmentos, Proteínas, Tetrasporófitos 

 

ABSTRACT 

The seaweed Kappaphycus alvarezii (Doty) L.M. Liao (Rhodophyta, Gigartinales) is an 

important marine resource for the commercial production of carrageenan (sulfated polysaccharide) 

used in the food, cosmetic, and pharmaceutical sectors. Cultivation of K. alvarezii in the South and 

Southeast regions of Brazil demonstrates a high potential for generating income and strengthening 

the local economy. For 30 years, experimental cultivation has been conducted at the Experimental 

Marine Farm of the Fisheries Institute (EMFFI), Ubatuba Bay, São Paulo State, while commercial 

initiatives have expanded to the south of Rio de Janeiro and Santa Catarina state. In the EMFFI, 

spontaneous strains of different colors originating from the pale-brown gametophyte “Edison de 

Paula – EP” were identified, but their characterization have remained limited. This study aimed to 

evaluate the growth, productivity, photosynthetic parameters, biochemical variables (pigments, 

proteins and carbohydrates) and carrageenan properties (yield and 3,6-anhydrogalactose and 

sulfate contents) of four strains: three EP gametophytic strains: pale-brown (E-br), light-green (E-

lg) and greenish-yellow (E-gy), and the brown tetrasporophyte (T-br), which originated the pale-

brown EP gametophyte. Samples (n = 20) of each strain were collected at the end of each 45-day 

growth cycle over one year, on a floating frame installed in the marine environment. Abiotic 

factors, including temperature, salinity, water transparency, and rainfall, were regularly monitored 

around the cultivation area. Initially, the study identified that the "edge effect" of the proposed 

experimental design negatively impacted growth rates, which was mitigated by a new 

methodological arrangement based on statistics and experimental control. Several interactive 

factors, exogenous and endogenous, determined the seasonal patterns, directly impacting growth 

rate and productivity, which were higher during the summer. During this period, a reduction in the 

levels of total soluble proteins and an increase in total carotenoids were observed, suggesting 

photoprotective responses. In the winter, carrageenan levels were higher. Additionally, our results 

highlight the influence of ploidy in determining physiological responses since higher 

concentrations of phycobiliproteins were observed in the tetrasporophyte, suggesting their 

influence on  higher growth rates and, consequently,  increased productivity. The results show that 

E-lg and E-gy strains are more similar to each other than to E-br strain (the parental gametophyte), 

and E-gy strain has higher photosynthetic efficiency. On the other hand, E-lg strain  showed lower 
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growth rates and phycoerythrin concentrations. Surprisingly, the yields of carrageenan and its 

sulfate contentes were similar among strains, and varied seasonally. The results reinforce the 

importance of integrating genetic, physiological, and seasonal factors in the sustainable 

management of K. alvarezii. 

 

Keywords: Algiculture, Carrageenan, Gametophytes, Pigments, Proteins, Tetrasporophytes.
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1. Introdução geral 

1.1 Importância econômica de Kappaphycus alvarezii 

Segundo estatísticas da FAO (2024), a produção de aquicultura mundial atingiu um 

recorde histórico de 37,6 milhões de toneladas anuais de algas frescas. Historicamente, apesar 

da desaceleração nos últimos anos nas taxas de expansão, o cultivo de algas vermelhas, como 

Kappaphycus alvarezii (Doty) L.M. Liao (Rhodophyta, Gigartinales) e Eucheuma spp.tem sido 

expressivo devido à demanda por carragenana (Hayashi et al., 2011; Paz-Cedeno et al., 2019; 

FAO 2024). 

As Filipinas são responsáveis por mais de 81% da produção global de K. alvarezii, 

totalizando 1,8 milhões de toneladas anuais (FAO, 2022). No Brasil, de acordo com o Ministério 

da Pesca e Aquicultura, a produção de macroalgas frescas alcançou 666,4 toneladas no ano 

2022. Esse cenário reflete uma produção incipiente, impulsionada pelo aumento da produção 

de K. alvarezii nos estados de Santa Catarina e Rio de Janeiro (MPA, 2023). 

Os cultivos de K. alvarezii estabeleceram-se como uma commodity de elevada 

relevância na região Ásia-Pacífico (Aslan et al., 2015), evidenciando papel preponderante na 

produção de hidrocolóides derivados de algas marinhas, dos quais a kappa-carragenana 

apresenta a maior demanda. (Hurtado et al., 2017). 

A kappa-carragenana, hidrocolóide extraído de Kappaphycus alvarezii, destaca-se por 

sua capacidade de formar géis fortes e rígidos (Hayashi et al., 2011; Hurtado et al., 2017; Paz-

Cedeno et al., 2019), apresentando propriedades gelificantes e estabilizadoras essenciais para 

aplicações nas indústrias alimentícia, farmacêutica e nutracêutica (Collén et al., 2014).  
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Na indústria alimentícia, as carragenanas são amplamente utilizadas como aditivos 

funcionais, atuando como agentes gelificantes, emulsificantes, espessantes e estabilizadores 

(Pickering, 2006; Holdt and Kraan, 2011; Porse and Rudolph, 2017). 

Do ponto de vista nutricional, K. alvarezii é consumida na alimentação humana (Ask 

and Azanza, 2002; Makkar et al., 2016), sendo considerada um alimento hipocalórico, rico em 

fibras, vitaminas (A, B1, B12, C) e minerais (Kumar and Kaladharan, 2007; Kumar et al., 2014). 

Além disso, contém substâncias bioativas, como polissacarídeos, proteínas, lipídios e 

polifenóis, que conferem propriedades antibacterianas, antivirais e antifúngicas, bem como 

oligoelementos e uma ampla variedade de metabólitos secundários não encontrados em outros 

organismos (Kumar et al., 2007; Holdt and Kraan, 2011), além de compostos com ação 

antioxidante (Araújo et al., 2023). É também fonte natural de tiamina, riboflavina, β-caroteno 

e tocoferóis (Kumar and Kaladharan, 2007; Kumar et al., 2014). 

O amido das florídeas, principal reserva energética das rodofíceas, apresenta elevado 

interesse biotecnológico devido às suas características estruturais singulares, configurando-se 

como uma fonte potencial de glicose para processos fermentativos, especialmente em indústrias 

que demandam substratos de rápida degradação, como na produção de bioetanol (Paz-Cedeno 

et al., 2019). 

Estudos sobre o metabolismo desses polissacarídeos em algas vermelhas têm fornecido 

importantes insights para o desenvolvimento de cultivos voltados à produção de biomassa 

algácea com aplicações bioenergéticas (Gügi et al., 2015). 

Além disso, K. alvarezii constitui uma fonte promissora de biocombustíveis de terceira 

geração, devido ao seu elevado teor de carboidratos (Masarin et al., 2016; Roldán et al., 2017; 

Solorzano-Chavez et al., 2019), destacando-se também como matéria-prima potencial para a 

produção de hidrogênio por meio de processos fermentativos (Masarin et al., 2016; Dalbelo, 

2017; Rodrigues et al., 2019; Fonseca et al., 2020). 
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A utilização de K. alvarezii como biofertilizante vem ocorrendo em alguns países 

(Hutado et al. 2021) e, o Brasil tem se consolidado como uma alternativa promissora, 

impulsionada pela presença de citocininas e microelementos que contribuem para o aumento 

da produtividade e a melhoria da nutrição das plantas (Pramanick et al., 2014; Gelli et al., 2020). 

Além disso, extratos de K. alvarezii, empregados como bioestimulantes orgânicos, têm 

demonstrado eficácia em diversas culturas agrícolas, promovendo práticas mais sustentáveis e 

ambientalmente responsáveis (Paz-Cedeno et al., 2019; Gelli et al., 2020; Gupta and Van 

Staden, 2021). 

No presente estudo, a quantificação precisa da biomassa e dos compostos bioativos de 

diferentes linhagens, incluindo as variantes espontâneas denominadas “Edison de Paula”, 

permitirá a identificação de cultivos mais produtivos e economicamente viáveis. Tal abordagem 

contribuirá para o desenvolvimento de técnicas aprimoradas de cultivo e de extração de 

metabólitos de interesse biotecnológico. 

Estudos experimentais voltados ao cultivo marinho e à caracterização bioquímica de 

linhagens espontâneas são fundamentais para a seleção de variantes com maior potencial de 

produtividade e qualidade, representando um avanço estratégico para a consolidação da cadeia 

produtiva de macroalgas. 

 

1.2 Rhodophyta 

 O filo Rhodophyta é caracterizado pela combinação de seis características: células 

eucarióticas; ausência de flagelos; produto de reserva denominado amido das florídeas (α-D-

Glucose, com ligações glicosídicas do tipo α(1→4) e pontos de ramificação no C-6, semelhante 

à amilopectina dos vegetais) armazenado no citoplasma e não nos cloroplastos; ficoeritrina, 
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ficocianina e aloficocianina como pigmentos acessórios; cloroplastos com tilacóides não 

agregados (não empilhados); e cloroplastos sem retículo endoplasmático externo (Cole and 

Sheath, 1990).  

As espécies de Rhodophyta podem apresentar diferentes tipos de histórico de vida que 

são mais complexos do que aqueles apresentados pelos demais grupos de algas por não terem 

células com flagelos. Kappaphycus alvarezii apresenta o histórico de vida do tipo Polysiphonia 

(Fig. 1-1), que apresenta alternância de gerações isomórficas (tetrasporófito (2n) e gametófito 

(n) são morfologicamente semelhantes) e mais uma fase diplóide (o carposporófito) crescendo 

sobre o gametófito feminino, ampliando o número e dispersão de carpósporos o que pode suprir 

a falta de flagelos (West and Hommersand, 1981).  

 

 

 

 

 

 

 

 

 

 

Figura 1-1: Esquema representativo do histórico de vida trifásico, com alternância de gerações 

isofórmicas, presentes em Kappaphycus alvarezii (Roleda et al., 2024 modificado). 

 

Clorofila a, carotenóides e ficobiliproteínas são os principais pigmentos fotossintéticos 

que facilitam a absorção eficiente de luz nas rodofíceas e são partes integrantes de toda a 

maquinaria fotossintética (Simkin et al., 2022). Os ficobilissomos (Fig. 1-2) estão presentes 

Tetrasporófito (2n)

Tetrasporângio

(estrutura que produz esporos)

Gametófito (n)

Tetrásporos (n)

Espermatângio
(estruturas reprodutivas )

Espermácios (n)
Carpogônio

(estruturas reprodutivas )

Carposporófito (2n)Carposporos (2n)

meiose

mitose

Gametófito (n)



19 
 

nas membranas dos tilacóides das algas vermelhas (Zhao et al., 2016) e funcionam não apenas 

como antenas para captar a luz, mas também como armazenamento de nitrogênio que é um 

nutriente limitante do crescimento de organismos fotossintetizantes (Bird et al., 1982).  

 

 

 

 

 

 

 

 

 

Figura 1-2: Ficobilissomos – Organização estrutural do complexo antena do fotossistema II 

(FSII) de algas vermelhas (A) e o processo de transferência de energia (B), modificado de 

Gvindjee and Shevala (2011). 

 

No ambiente marinho, as ficobiliproteínas capturam um amplo espectro de luz e 

permitem que as algas vermelhas cresçam em águas mais profundas, onde outros 

comprimentos de onda são atenuados pela coluna de água (Glazer, 1985). A ficoeritrina absorve 

a cor verde, amarela e vermelha, enquanto a ficocianina absorve a luz azul, verde e amarela. 

Estes são os espectros de luz que mais penetram o fundo do mar, permitindo às algas vermelhas 

sobreviverem em condições com baixa irradiância (Hurtado et al., 2017). 

As rodofíceas são um grupo de organismos marinhos amplamente estudados por suas 

propriedades bioquímicas, especialmente em relação aos carboidratos (McHugh, 2003; Duarte 
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and Noseda, 2015; Hurtado et al., 20121). Os principais carboidratos encontrados nas 

rodofíceas são os polissacarídeos sulfatados, como agarose, agaropectina e carragenanas 

(McHugh, 2003; Usov, 2011).  

Os galactanos são componentes importantes de muitas paredes celulares vegetais e nas 

algas marinhas são os principais polissacarídeos em matrizes extracelulares (Ciancia et al., 

2020). 

Em particular, a maioria das algas vermelhas biossintetizam galactanos sulfatados com 

uma estrutura que não tem equivalente em plantas terrestres, constituída por alternar unidades 

b-D-galactopiranosil de 3 ligações (unidade A) e resíduos a-galactopiranosil de 4 ligações 

(unidade B). Nas algas industrialmente utilizadas como fonte de hidrocolóides, as unidades B 

pertencem à série D e produzem carrageninas (como em Gigartinales), ou à série L, e são fontes 

de agarose e/ou polímeros estruturalmente relacionados (por exemplo, Gelidiales, 

Gracilariales). Em ambos os casos, as últimas unidades aparecem como 3,6-anidro-a-galactose 

ciclizada em uma certa quantidade (Fig 1-3). 

 

 

 

 

 

 

 

 

 

Figura 1-3: Esquemas diasteroméricos alternados de galactanas sulfatadas de algas vermelhas, 

nomeados de acordo com a nomenclatura atualmente aceita de Knutsen et al., 1994. Esquemas 

de carragenana (A), Esquemas de agarana (B). O esqueleto de agarana ciclizado (G-LA) 
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corresponde à estrutura idealizada da agarose. O sistema de numeração é mostrado em 

vermelho. 

 

Em ambos os casos, as últimas unidades aparecem como 3,6-anidro-a-galactose ciclizada 

em certas quantidades, que podem ser aumentadas pela ciclização alcalina de unidades de a-

galactose 6-sulfato (Ciancia et al., 2020). 

 Outra característica interessante desses galactanos é a variação nos padrões de 

sulfatação, que modula seu comportamento físico em soluções aquosas (Hehemann et al. 

2012). Embora as carragenanas mais comuns sejam dos tipos κ/ι e λ (com unidades A sulfatadas 

nas posições 4 e 2, respectivamente), outros tipos de carragenanas foram relatados 

correspondentes (Ciancia et al., 2020). 

Estes polissacarídeos são importantes em algumas funções biológicas e adaptativas das 

algas ao ambiente marinho, pois mantêm a umidade quando expostas ao dessecamento em 

marés baixas, a concentração celular interna em ocasiões de chuva, e conferem flexibilidade 

ao talo (Usov, 2011). 

O amido das florídeas é produzido durante o processo de fotossíntese, servindo como 

uma reserva energética para períodos em que a disponibilidade de luz ou nutrientes no ambiente 

marinho é limitada, desempenhando um papel crucial no metabolismo das algas vermelhas e 

em suas adaptações ecológicas (Yoon et al., 2006). 

As cadeias de glicose no amido das florídeas são menos organizadas e mais amorfas do 

que o amido de plantas superiores, o que facilita sua mobilização rápida em momentos de 

necessidade energética. Essa estrutura mais ramificada também confere a esse amido 

propriedades físico-químicas diferentes, como maior solubilidade em água e uma 

digestibilidade mais rápida (Delattre et al., 2016). 
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Durante a noite ou em condições de estresse ambiental, como variações na temperatura 

ou na disponibilidade de nutrientes, as algas vermelhas mobilizam o amido florideano para 

sustentar seu metabolismo (Lee, 2018). Contudo, estudos indicam que, em Neopyropia 

haitanensis, o amido florideano é mantido, enquanto o floridosídeo é metaboliziado sob 

condições de escuro, sugerindo alterações na interação metabólica da rede “amido das 

florídeas–floridosídeo” e nas suas bases genéticas (Yu et al., 2021). 

 

1.3 Histórico do cultivo de Kappaphycus alvarezii no Brasil  

 No Brasil, os primeiros experimentos com a macroalga Kappaphycus alvarezii 

foram iniciados a partir de um talo com aproximadamente 2,5 g, proveniente de uma cultura 

experimental desenvolvida no Japão (USA Marine Institute – University of Kochi). Essa 

linhagem, considerada saudável e produtiva, teve origem em cultivos comerciais estabelecidos 

nas Filipinas (Paula and Pereira, 1998; Paula et al., 2001; Gelli et al., 2024). 

O talo inicial, de coloração marrom, foi propagado em cultura unialgal sob condições 

axênicas durante dez meses em laboratório. Posteriormente, os fragmentos foram transferidos 

para cultivo experimental ex situ em ambiente marinho, conduzido em parceria com o Instituto 

de Pesca, no município de Ubatuba, SP (Paula and Pereira, 1998; Paula et al., 2001).  

A metodologia adotada priorizou o transplante de propágulos previamente cultivados 

em ambiente controlado, reduzindo os riscos de introdução de espécies exóticas e assegurando 

a avaliação fitossanitária dos talos (Gelli et al., 2024). 

Durante o cultivo marinho, observaram-se variações espontâneas na pigmentação dos 

talos, alternando entre colorações verde, vermelha e marrom, indicativas de plasticidade 
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fenotípica (Paula et al., 1999). Essas culturas de K. alvarezii permanecem sob monitoramento 

contínuo até os dias atuais (Gelli et al., 2024). 

Paralelamente, estudos laboratoriais realizados no Instituto de Biologia da Universidade 

de São Paulo (USP) investigaram o ciclo de vida da espécie sob condições controladas (Paula 

et al., 2001). O talo marrom original, identificado como pertencente à fase esporofítica 

tetrasporófita, produziu tetrásporos que originaram gametófitos com distintas características de 

coloração, morfologia e taxa de crescimento (Paula et al., 1999).  

No entanto, a germinação in vitro dos tetrásporos apresentou elevada taxa de 

mortalidade entre dois e quatro dias após a liberação, sendo que apenas 20 indivíduos foram 

cultivados com sucesso, mantendo-se viáveis por mais de um ano (Paula et al., 1999). Esses 

resultados evidenciaram o potencial biotecnológico das progênies de tetrásporos como material 

genético para a seleção de novas linhagens. 

Algumas dessas progênies foram propagadas experimentalmente no mar, em Ubatuba, 

SP. Após sete meses de cultivo, apenas dois indivíduos sobreviveram, apresentando baixas taxas 

de crescimento. Essas linhagens também exibiram modificações morfológicas, como aumento 

no número de ramificações e alterações na pigmentação (Paula et al., 1999). Entre os indivíduos 

sobreviventes, um gametófito foi selecionado em razão de sua estabilidade e características 

desejáveis, sendo denominado “G11”, cuja ploidia foi confirmada por meio de microscopia de 

fluorescência confocal (Zitta et al., 2012). Posteriormente, em homenagem ao pesquisador 

responsável, essa linhagem foi nomeada “Edison de Paula” (Hayashi, 2007). 

Embora se espere maior variabilidade genética entre progênies de tetrásporos em 

comparação às de carpósporos, a amplitude de variação fenotípica observada nesse estudo 

revelou-se incomum e aparentemente sem precedentes entre as espécies de algas conhecidas 

(Paula et al., 1999). 
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Ao final desses estudos, demonstrou-se que três linhagens com diferentes colorações — 

marrom, verde e vermelha — apresentaram taxas de crescimento e rendimentos de carragenana 

semelhantes. Em contrapartida, a linhagem “G11” destacou-se por seu menor crescimento, com 

maior teor de 3,6-anhidrogalactose e força de gel superior (Paula et al., 1999; Hayashi et al., 

2008). 

O cultivo comercial de K. alvarezii no Brasil teve início em 1998, na Baía da Ilha 

Grande, RJ, utilizando propágulos importados da Venezuela (Gelli et al., 2024). Contudo, 

apenas em 2007 foi publicada a regulamentação oficial para o cultivo da espécie no país (Brasil, 

2007). 

Os cultivos experimentais enfrentaram limitações impostas por fatores econômicos, 

como o baixo retorno financeiro, e por entraves burocráticos associados à regularização das 

áreas destinadas ao cultivo (Brasil, 2020). Em Santa Catarina, entretanto, fazendas 

experimentais de K. alvarezii foram recentemente estabelecidas em áreas anteriormente 

destinadas ao cultivo de moluscos bivalves, demonstrando a viabilidade do aproveitamento 

dessas áreas para sistemas de policultivo (Gelli et al., 2024). 

Apesar do elevado potencial do Brasil para o desenvolvimento da maricultura de algas 

marinhas, o setor ainda se encontra em estágio incipiente. No litoral norte do Estado de São 

Paulo, esforços recentes resultaram na elaboração de um mapa de ordenamento territorial 

específico para a instalação de fazendas marinhas, visando à expansão sustentável da atividade 

e à maximização do uso racional da zona costeira (Gelli et al., 2024). 

 

1.4 Aspectos ambientais do cultivo de Kappaphycus alvarezii 
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A macroalga Kappaphycus alvarezii foi introduzida experimentalmente no litoral norte 

do estado de São Paulo em 1995, com o propósito de suprir a crescente demanda por seus 

subprodutos. Essa iniciativa foi impulsionada pela projeção de esgotamento dos bancos naturais 

da alga nativa Hypnea pseudomusciformis Nauer, Cassano & Oliveira, pela dependência de 

matérias-primas importadas derivadas de macroalgas e pelas dificuldades técnicas associadas 

ao cultivo de espécies nativas (Paula and Pereira, 1998; Oliveira, 2005; Reis et al., 2007a, b; 

Hayashi and Reis, 2012). 

A introdução de K. alvarezii na costa brasileira (Processo IBAMA/MMA nº 

02027.009179/1996-11) foi precedida por estudos abrangentes sobre seu potencial econômico, 

aspectos biológicos e ecológicos, técnicas de cultivo e riscos ambientais associados, com apoio 

do Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (Paula, 2001; 

Paula et al., 2002; Paula and Pereira, 1989). 

Com o objetivo de mitigar possíveis impactos ambientais, foram implementados 

protocolos de avaliação de risco e programas de monitoramento, voltados à detecção da 

instalação da espécie no ambiente e à prevenção da introdução de organismos associados 

indesejáveis (Oliveira, 2005; Castelar et al., 2009). 

Os cultivos experimentais foram conduzidos durante o inverno, estação menos favorável 

ao desenvolvimento da espécie, e os resultados demonstraram a viabilidade da área para o 

estabelecimento de cultivos comerciais (Hayashi, 2007).  

Após 29 anos de cultivo contínuo de K. alvarezii na Baía de Ubatuba, não foram 

observadas evidências de sua dispersão por fragmentos vegetativos ou propágulos reprodutivos, 

indicando baixo potencial de invasão (Bulboa et al., 2008; Araújo et al., 2020).  
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Ainda assim, destaca-se a necessidade de manter um monitoramento ambiental 

sistemático e permanente, essencial para prevenir impactos e garantir a sustentabilidade da 

aquicultura (Araújo et al., 2020, 2023). 

O cultivo de macroalgas também proporciona benefícios ambientais indiretos, como a 

remoção de nutrientes dissolvidos em excesso, contribuindo para a mitigação da eutrofização 

em ambientes costeiros (Marinho-Soriano et al., 2002).  

Estudos de Hayashi et al. (2008) evidenciaram a eficiência de K. alvarezii na absorção 

de nutrientes, caracterizando-a como biofiltro potencial em sistemas integrados de cultivo 

multitrófico. 

Além disso, os cultivos funcionam como atratores biológicos, oferecendo substrato, 

abrigo e alimento a diversos organismos marinhos, como peixes e tartarugas (Reis et al., 2004; 

Oliveira, 2005).  

Em comparação a matérias-primas vegetais terrestres, as macroalgas apresentam 

vantagens significativas: não requerem áreas agrícolas, evitam competição com culturas 

alimentares, dispensam o uso de insumos nitrogenados e possuem baixos teores de lignina, o 

que reduz a necessidade de pré-tratamentos onerosos para a liberação de açúcares, favorecida 

por sua baixa recalcitrância (Dalbelo, 2017) 

 

1.5 Algicultura e sua importância econômica e social 

A sustentabilidade social nas cadeias de valor da pesca e da aquicultura consolidou-se 

como tema central para a comunidade internacional e demais partes interessadas, refletindo 

uma crescente preocupação com os impactos sociais dessas atividades (FAO, 2022).  
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A aquicultura tem sido promovida como setor estratégico, com elevado potencial de 

crescimento e capacidade para fortalecer o protagonismo de mulheres e jovens, especialmente 

ao ampliar o poder de decisão das mulheres sobre o consumo e a oferta de alimentos nutritivos 

(Cervantes-Godoy et al., 2014; FAO, 2022). 

Em reconhecimento à relevância desses temas, a Assembleia Geral das Nações Unidas 

declarou o ano de 2022 como o “Ano Internacional da Pesca e da Aquicultura de Pequena 

Escala” (IYAFA 2022). Durante esse período, as ações institucionais buscaram ampliar a 

conscientização global, promover o empoderamento de pequenos produtores e evidenciar os 

benefícios de políticas e práticas inclusivas que favoreçam a gestão sustentável da pesca 

artesanal e da aquicultura. 

A implementação de uma aquicultura ordenada e responsável configura-se como 

estratégia eficaz para a geração de emprego e renda. Essa abordagem amplia a produtividade 

das zonas costeiras por meio da utilização racional e do manejo sustentável dos recursos 

naturais, favorece a permanência dos produtores em suas comunidades de origem, protege o 

meio ambiente, fortalece cadeias produtivas associadas — como o turismo e a própria 

aquicultura — e contribui para a redução da pressão sobre os estoques pesqueiros (Giffoni et 

al., 1998; Fagundes et al., 2004; Pereira and Rocha, 2015). 

As regiões litorâneas compreendidas entre os estados de São Paulo e Rio de Janeiro 

apresentam características ambientais e geográficas favoráveis à implantação da maricultura. A 

proximidade com os principais centros consumidores, aliada à presença de enseadas e pequenas 

baías abrigadas, confere a essas áreas um elevado potencial para o desenvolvimento de cultivos 

marinhos (Fagundes et al., 2004; Nogueira, 2018). 

No estado de São Paulo, destacam-se comunidades tradicionais costeiras que enfrentam 

processos acelerados de transformação social e declínio progressivo dos recursos pesqueiros. 
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Esse cenário ressalta a necessidade de alternativas sustentáveis de produção, entre as quais a 

aquicultura se apresenta como ferramenta promissora de adaptação e resiliência (Nogueira, 

2018). Entretanto, a implantação da algicultura no estado ocorre de forma gradual e planejada, 

considerando aspectos técnicos, ambientais e sociais (Gelli, 2019). 

 

1.6 Conclusão 

Considerando a diversidade fenotípica das linhagens de Kappaphycus alvarezii 

cultivadas na Fazenda Marinha Experimental do Instituto de Pesca (EMFFI), hipotetiza-se que 

as linhagens gametofíticas “Edison de Paula” apresentem diferenças significativas nas respostas 

fisiológicas em comparação à linhagem tetrasporofítica. Espera-se, assim, identificar linhagens 

com desempenho superior e maior potencial biotecnológico para cultivos comerciais. 

O objetivo principal deste estudo é identificar, entre as linhagens selecionadas, linhagem 

tetrasporofítica “Tetrasporófito marrom – T-br” e as gametofíticas “Edison de Paula marrom-

claro – E-br”, “Edison de Paula verde-claro – E-lg” e “Edison de Paula amarelo-esverdeada – 

E-gy”, aquelas com melhor desempenho produtivo em termos de biomassa e subprodutos, por 

meio da avaliação das respostas fisiológicas de crescimento, atividade fotossintetizantes, 

variáveis bioquímicas e teores de carragenanas. 
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2.1 ABSTRACT 

The seaweed Kappaphycus alvarezii (Doty) L.M. Liao (Rhodophyta, Gigartinales) has been 

cultivated experimentally at the Marine Experimental Farm of the Fisheries Institute (MEFFI) 

in Ubatuba. This seaweed, along with its various strains, is an important commercial source of 

carrageenan. The study aimed to evaluate the experimental design by analyzing the growth rates 

on the floating frame (n = 10) in four color strains of K. alvarezii: three gametophytes strains, 

light-green (E-lg), yellowish-green (E-gy), and pale-brown “Edison de Paula” (E-br), which 

derived from the brown tetrasporophyte (T-br) also evaluated. Initially, the experimental design 

included seedlings arranged in two floating raft, with 16 lines containing 10 seedlings each 

(secured using the "tie-tie" method). Each row contained 70 - 100 g of a single strain, resulting 

in four sample units for each strain replanted at each harvest over 30 days. However, this design 

exhibited an "edge effect," which could influence the outcomes of subsequent analyses. The 

experiment has been revised in the new setup. Each strain was represented by 20 seedlings that 

were placed together in a single floating frame and randomly distributed across eight lines, 

becoming 80 randomly distributed seedling positions and a 45-day growth cycle while 

maintaining other experimental conditions. 

 

Keywords: mariculture, floating raft, edge effect  

 

2.2 INTRODUCTION 

The seaweed Kappaphycus alvarezii (Doty) L.M.Liao (Rhodophyta, Gigartinales) from 

Southeast Asia was introduced in Brazil in 1995 by the Fishing Institute of São Paulo in 

partnership with the Institute of Biosciences of the University of São Paulo (Paula et al., 1999; 

Reis et al., 2007) when considering the difficulties for the cultivation of native carrageenans 

(Oliveira, 1990; Paula et al., 2002), for carrageenan extraction (Ask & Azanza, 2002; Paula et 

al., 2002). 

Since then, K. alvarezii has been cultivated in an open environment. It is subject to 

seasonal variations (Ask and Azanza, 2002; Hurtado et al., 2015; Hayashi et al., 2007a) due to 
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climatic actions and can also be influenced by its physical arrangement (cultivation protocols) 

in the cultivation structures. 

            Some cropping systems were used based on field and laboratory experiments (Ask & 

Azanza, 2002). Among these, the “tie-tie” system, noted by Doty & Alvarez (1975), emerged 

in different forms, including fixed longlines and floating rafts. This system became predominant 

mainly due to its simplicity, the availability and low cost of materials, and the healthy growth 

of the plants (Trono, 1989; Ask, 1999). Over the years, there have been few variations in 

cultivation protocols (Ask & Azanza, 2002).  

In Ubatuba, a cultivation period of approximately 40 to 45 days is recommended. While 

longer periods may tolerate some plant breakage and material loss due to larger sizes achieved, 

it is advisable to grow the plants close to the surface. Maintaining a planting density 12 plants 

m-2 can help avoid self-shading among neighboring plants (Hayashi et al., 2007b).  

To anticipate the final proposed experiment results it was necessary to observe whether 

the arrangement of macroalgae within the cultivation structures was influencing growth rates. 

This observation could lead to satisfactory results.  

 

2.3 EXPERIMENTAL DESIGN  

 Samples of Kappaphycus alvarezii strains will come from experimental cultures 

developed at the Experimental Marine Farm of the Fisheries Institute, in Ubatuba Bay, São 

Paulo state, Brazil (23°27′5.8″S; 45° 02′49.3″W), (Fig. 2-1). 
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Figure 2-1: Initial experimental design. Experimental Marine Farm of the Fisheries Institute 

(EMFFI), in Ubatuba Bay, São Paulo state, Brazil 

 

 The determination of the experimental design was evaluated through the growth rates 

of the strains of the seaweed Kappaphycus alvarezii tetrasporophyte (T-br) brown and the 

gametophytes “Edison de Paula” (E-br) Pale-brown; Light green (E-lg) and greenish-yellow 

(E-gy) were used for longline with floting frame (Solorzano-Chavez et al., 2019), already 

established on site (Gelli, personal communication) in the experimental unit of seaweed 

cultivation at the Fisheries Institute, Ubatuba-SP. 

            Two frames (3 m X 2.5 m) were inserted between polypropylene cables of the “long-

line”, formed by PVC tubes with "cap" at the ends (floats) in the transversal direction to the 

flow of the water current, the seedlings were placed in the 8 lines and each line 10 moorings 
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(tie-tie) containing a single strain, totaling 16 lines with 4 sampling units of each strain. The 

positioning of the strains was previously drawn (Fig. 2-2). 

  

 

 

 

 

 

 

Figure 2-2: Initial spatial distribution of the strains of Kappaphycus alvarezii strains. Brown 

tetrasporophyte (T-br); Pale-brown Edison de Paula (EP-br); Light-green Edison de Paula (EP-

lg); Greenish-yellow Edison de Paula (EP-gy), (January/2022 – July/2022). 

 

Seedlings were placed in distance of 20 cm on the row and 27 cm apart between rows, 

the density was12 plants m-2 (Hayashi et al., 2007b) and seedlings of 70 to 100 g weight were 

replanted in each harvest , where they remained at a maximum depth of 50 cm from the surface 

of the water for a growth period of 30 days (growth cycle). 

 

Growth Rate  

Fresh mass was recorded at 30-day intervals (growth cycles). Weight data were 

determined for everyone (n = 40) with a precision electronic balance. The growth rates (GR, % 

d-1) were calculated according to the formula: GR = [(Bf/Bi)1/t − 1] x 100 %; Bi = initial mass, 

Bf = final mass at the harvest, t = time in days (Yong et al. 2013). 
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2.4 RESULTS 

 Table 2-1 presents the growth rate variations observed for Kappaphycus alvarezii strains 

over a six-month period, from January to July 2022.  

Table 2-1: Growth rates of Kappaphycus alvarezii strains cultivated from January to June/2022, 

in the Experimental Marine Farm of the Fisheries Institute (EMFFI), Ubatuba Bay, São Paulo 

state. Brown tetrasporophyte (T-br); Pale-brown Edison de Paula gametophyte (E-br); Light-

green Edison de Paula gametophyte (E-lg); Greenish-yellow Edison de Paula gametophyte (E-

gy). Values represent average ± standard deviation (n = 40). 

 

Growth Cycles 

Strains (GR, % d-1) 

T-br E-br E-lg E-gy 

January/2022 7.57 ± 2.65 3.11 ± 0.47 2.07 ± 0.44 1.68 ± 0.35 

February/2022 8.90 ± 1.67 4.48 ± 0.52 3.63 ± 0.50 3.95 ± 0.43 

March/2022 5.06 ± 0.80 2.82 ± 1.14 1.65 ± 0.35 2.44 ± 0.21 

April/2022 3.92 ± 0.80 1.88 ± 0.32 1.21 ± 0.22 1.15 ± 0.08 

May/2022 3.57 ± 0.32 1.93 ± 0.22 1.49 ± 0.09 1.13 ± 0.16 

June/2022 3.35 ± 0.34 1.82 ± 0.25 1.84 ± 0.21 1.01 ± 0.17 

  

Additionally, summarizes the average growth rates for each strain over the total sample 

period in each row in the floating frame, (Table 2-2). 

Table 2-2: Average of growth rates per row of Kappaphycus alvarezii strains cultivated from 

January to June/2022, in the Experimental Marine Farm of the Fisheries Institute (EMFFI), 

Ubatuba Bay, São Paulo state. Brown tetrasporophyte (T-br); Pale-brown Edison de Paula (E-

br); Light-green Edison de Paula (E-lg); Greenish-yellow Edison de Paula (E-gy). Values 

represent average ± standard deviation (n = 60).  
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Strains Line % d-1 Strains Line % d-1 

T-br 

2 6.24 ± 2.79 

E-br 

1 2.21 ± 0.77 

5 5.86 ± 2.63 10 2.44 ± 0.85 

8 4.00 ± 1.32 13 2.94 ± 1.07 

16 5.48 ± 2.47 14 3.12 ± 1.40 

E-lg 

3 2.21 ± 0.86 

E-gy 

2 1.57 ± 0.61 

6 2.04 ± 1.09 7 1.58 ± 0.74 

9 1.84 ± 0.65 12 1.83 ± 0.92 

11 1.84 ± 0.68 15 1.92 ± 0.76 

 

 The data distribution (normality) initially proposed organizations and evidenced 

differences in the growth rates of the same strain. Tukey test to observe significant differences 

between the average of growth rates between the row for each strain (Table 2-3). 

In the experimental design, it was observed that growth rates varied among the strains 

placed on the floating raft, and their position on the frame influenced these differences. T-br 

strain, line 8, located at the edge, exhibited slower growth compared to lines 2 and 6, as well as 

line 16. E-br strain, line 1, also showed slower growth than lines 13 and 14, which were 

positioned more toward the center of the floating raft (Table 2-3). 

Table 2-3: Statistical analysis of growth rates of each cultivation line 1 (L1); line 2 (L2); line 3 

(L3); line 4 (L4); line 5 (L5); line 6 (L6); line 7 (L7); line 8 (L8); line 9 (L9); line 10 (L10); 

line 11 (L11); line 12 (L12); line 13 (L13); line 14 (L14); line 15 (L15); line 16 (L16); (Tukey 

test, p ≤ 0.05) of Kappaphycus alvarezii strains. Brown tetrasporophyte (T-br); Pale-brown 

Edison de Paula (E-br); Light-green Edison de Paula (E-lg); Greenish-yellow Edison de Paula 

(E-gy), (January/2022 – June/2022, n = 60). 

T-br 

 L2 L5 L8 L16 

L2  0.8961 0.0002* 0.5003 

L5 0.9933  0.0029* 0.8977 

L8 5.9620 4.9690  0.0269* 

L16 1.9800 0.9872 3.9820  
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E-br 

 L1 L10 L13 L14 

L1  0.5637 0.0140* 0.0010* 

L10 1.8390  0.3071 0.0643 

L13 4.2950 2.4560  0.8759 

L14 5.3570 3.5190 1.063  

E-lg 

 L3 L6 L9 L11 

L3  0.8059 0.2706 0.4093 

L6 1.2700  0.7978 0.9147 

L9 2.5610 1.2920  0.9938 

L11 2.1902 0.9225 0.3690  

E-gy 

 L2 L7 L12 L15 

L2  0.9889 0.1983 0.0896 

L7 0.4497  0.3459 0.1788 

L12 2.8010 2.3510  0.9826 

L15 3.3250 2.8750 0.5242  

*Bold, significant p-values (p ≤ 0.05). 

 

2.5 DISCUSSION 

 The growth rate (GR) data of Kappaphycus alvarezii strains showed that brown 

tetrasporophyte had higher GR (5.42 ± 2.31 % d-1) when compared with gametophytic strains 

(E-br: 2.67 ± 1.05 % d-1; E-lg: 1.98 ± 0. 85 % d-1; E-gy: 1.73 ± 0.81 % d-1), corroborating the 

results of previous studies in which tetrasporophytes presented higher growth rates than 

gametophytes in the same cultivation site (Hayashi et al., 2007a; Solorzano-Chavez et al., 

2019). 

To reduce the “edge effect”, which negatively influenced the results, the experimental 

design was modified. The edge effect is one of the main bias factors in experiments with 

fragmented ecosystems, as environmental and biological conditions at the edges differ from 
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those in the interior, affecting organisms and abiotic variables (Laurance, 2000; Harper et al., 

2005). Meta-analyses show that the intensity of these effects varies according to the type of 

edge (natural or anthropogenic), reinforcing their relevance in experimental design (Magura, 

2017).  

Thus, methodological strategies such as excluding plots near the edges, using 

continuous models (Ewers & Didham, 2006), and bias simulations (Van Meter et al., 2010) are 

essential to ensure the robustness and validity of research. 

 

2.6 CONCLUSION 

The modification in the experimental design aims to achieve satisfactory results by 

working with a smaller volume of biomass during the production cycles. The methodology 

proposed by Levin (1987) and Triola (1999) determined a new appropriate sample size, 

according to the equation: 

 

 

Where: n = number of individuals in the sample; Zα = critical value corresponding to the desired 

degree of confidence; Ϭ = population standard deviation of the studied variable; E = Maximum 

estimate error margin (maximum difference between the sample mean (X) and the true 

population means). 

This approach, based on the previously obtained results, facilitated the calculation of a 

new sample size. To ensure statistical reliability for the project with a confidence level of 95% 

(p ≤ 0.95), a minimum sample size of 13 units was determined based on the maximum 

occurrence in the standard deviation (SD) along the same row, without accounting for edge 

effects between strains. As a result, we proposed using 20 seedlings (n = 20) from each strain 
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for the new sampling design. Total of 80 seedlings will be placed in a floating frame, and they 

will be rearranged by random selection every 45 days during the production cycle (Fig. 2-3). 

 

 

 

 

 

Figure 2-3: Proposal for experimental cultivation of Kappaphycus alvarezii strains, random 

spatial distribution within the frame. Brown tetrasporophyte (T-br); Pale-brown Edison de Paula 

(E-br); Light-green Edison de Paula (E-lg); Greenish-yellow Edison de Paula (E-gy), (n = 20). 

 

Within this cultivation floating raft will be planted, 80 seedlings from 70 to 100 g 

(strains; T-br, E-br, E-lg, and E-gy, n = 20) along eight rows using the mooring system 

commonly called “Tie-Tie” (12 plants m-2) (Hayashi et al. 2007b). For each rope embedded in 

the raft, ten seedlings will be planted at a 20 cm distance on the cable and 27 cm between them 

and maintained at a depth of approximately 50 cm.  

Harvests occurred every 45 days, resulting in a total of 8 consecutive growth cycles 

(cycle 1: August-September/2022, cycle 2: October-November/2022, cycle 3: November-

December/2022, cycle 4: January-February/2023, cycle 5: February -March/2023, cycle 6: 

April-May/2023, cycle 7: May-June/2023, and cycle 8: July-August/2023). After 45 days, the 

seaweeds will be harvested, cleaned, and weighed, and new seedlings will be planted. 

Concomitantly data to evaluate growth rates will be obtained. At each harvest, the seedlings 

will be randomly positioned through seedling draws and subsequently inserted into the floating 

frame (from 1 to 80 position). 
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In conclusion, the analysis revealed that the differences in growth rates were influenced 

by the position of the seedlings within the floating raft in the initial experimental design, 

highlighting a phenomenon known as the "edge effect." In response, a new experimental design 

was proposed and implemented. This new methodological approach, grounded in statistical 

principles and experimental control, led to increased reliability and reduced bias in the collected 

data. 
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3.1 Abstract 

Kappaphycus alvarezii (Doty) L.M. Liao (Rhodophyta) is a widely studied species that 

provides raw material for carrageenan production, however, mass production struggles to 

maintain species viability owing to low genetic variability. New strains of K. alvarezii with 

different phenotypes have emerged from sea cultivation in Ubatuba bay, southeastern Brazil. 

The present study aimed to evaluate growth rates, photosynthesis, and pigment and protein 

concentrations in four K. alvarezii strain, including the brown tetrasporophyte (T-br) and three 

gametophytic strains: “Edison de Paula” pale-brown gametophyte (E-br), which originated 

new strains, named light-green (E-lg) and greenish yellow (E-gy) gametophytes. These strains 

were cultivated in a floating raft system for one year at the Experimental Marine Farm of the 

Fisheries Institute. T-br tetrasporophyte showed higher growth rates and higher 

phycobiliprotein concentrations than the gametophytic strains.  Maximum electron transport 

rates (ETRmax) and irradiance saturation (Ek) varied among strains and seasons, and the E-lg 

and E-gy gametophytes had higher ETRmax and Ek than the T-br tetrasporophyte and E-br 

gametophyte. Results of principal component analyses (PCA) evidenced three groups: E-lg 

and E-gy gametophytes with higher ETRmax and Ek, T-br tetrasporophyte and E-br 

gametophyte formed distinct groups related to phycobiliprotein concentrations. In conclusion, 

our results corroborate the significant differences between T-br tetrasporophyte and the three 

gametophytic strains of K. alvarezii, and results of PCA showed two distinct groups of 

gametophytic strains, although E-lg and E-gy gametophytes were originated from the E-br 

gametophyte. Furthermore, novel strains are needed to increase genetic diversity and to 

expand the cultivation of K. alvarezii in the region. 

 

Keywords: “Edison de Paula” gametophytes, photosynthetic performance, total soluble 

protein, phycobiliproteins, Ubatuba Bay 
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3.2 Introduction 

Kappaphycus alvarezii (Doty) L.M.Liao and Eucheuma J. Agardh hold the highest 

position in the global production volume rankings for cultivated macroalgae (Hurtado et al. 

2019). K. alvarezii biomass can be used for carrageenan extraction (Solorzano-Chaves et al. 

2019), bioethanol production (Roldán et al. 2017), or as foliar biofertilizers (Gelli et al. 2020). 

The historic of the introduction of Kappaphycus alvarezii in Brazil was described in 

details by Gelli et al. (2024). In summary, K. alvarezii was introduced in Brazil in 1995 by 

Professor Édison José de Paula of São Paulo University, and thallus segments of brown 

tetrasporophyte were provided by Professo Masao Ohno, from experimental cultivation in 

Usa Bay, Kochi, Shikoku Island, Japan (Paula et al. 1998). Unialgal culture of K. alvarezii 

was initiated from a 2.5 g brown tetrasporophytic branch in the Laboratory of Marine Algae, 

Institute of Biosciences, São Paulo University (Paula et al. 1999), and this strain was 

originated from commercial cultivation in the Philippines (Paula and Pereira 1998; Paula et al. 

1999). After 10 months of laboratory cultivation, 20 branches (2.0-4.0 g) were transferred to 

sea cultivation (Paula et al. 1999), and the process of K. alvarezii domestication has been 

ongoing since 1995-1996 through the cultivation of brown tetrasporophytic strain into the 

Experimental Marine Farm of Fisheries Institute, Ubatuba bay, São Paulo State, Brazil (Gelli 

et al. 2024). During the period of December 1995–May 1996, three fertile tetrasporophytic 

branches (~10 cm, 50 g fresh weight) were collected monthly (Paula et al. 1999), and 

cultivated in laboratory controlled conditions for tetraspore liberation. After 1-2 days, released 

tetraspores were cultivated giving rise to tetrasporelings (Paula et al. 1999; Paula et al. 2001). 

Although a large number of tetraspores were produced, high percentage of mortality was 

observed, and only 21 tetrasporelings survived, and 20 individuals with different color and 

morphology remaining viable for at least two years under laboratory conditions (Paula et al. 
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1999). Firstly, tetrasporelings were grown fixed to the bottom of Petri dishes, but they were 

transferred to Erlenmeyer flasks after one month, and grown together during 4 months. 

Afterwards, they were transferred to separate flasks and cultivated individually (Paula et al. 

1999), and for this reason, fertilization did not occur and cystocarps were not developed. 

Differently, Hinaloc and Roleda (2021) cultivated tetraspore progeny in pool, and observed 

sexual differentiation in male and female gametophytes as well as phenotypic variation in 

morphology and color.  Paula et al. (1999) reported that only two gametophytes (Pl. 11 and Pl. 

18) survived a full year at sea cultivation. Finally, only the P11 gametophyte (initially named 

G11) has been cultivated in the Ubatuba bay currently (Gelli et al. 2024). Afterwards, the G11 

gametophyte was named “Edison de Paula” gametophyte to honour Prof. Dr. Edison José de 

Paula, who isolated and cultivated this strain (Hayashi 2007). The ploidy of brown 

tetrasporophyte and “Edison de Paula” pale-brown gametophyte was confirmed by Zitta et al. 

(2012) using a method with confocal fluorescence microscopy. 

  Gelli et al. (2024) reported that during the domestication process of K. alvarezii by 

clonally propagation of original parental brown tetrasporophyte and Edison de Paula pale-

brown gametophyte, spontaneous growth of branches with distinct color from parental plant 

was observed, and these branches were clonally propagated originating new color strains. 

Currently, 12 color strains (9 tetrasporophytic strains and 3 gametophytic strains) are being 

cultivated in the Experimental Marine Farm of Fisheries Institute, Ubatuba bay (Gelli et al. 

2024). Furthermore, temperature was a determinant factor on the generation of new strains of 

K. alvarezii in the region (Gelli et al. 2023). During the harvesting process, the appearance of 

branches with different color was observed, and these branches were isolated and propagated 

to generate new color strains. The original brown tetrasporophyte originated red and green 

tetrasporophytic strains, which originated other color strains. In 2013, “Edison de Paula” pale-

brown gametophyte developed light-green branches, which were excised and clonally 
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propagated originating the light-green (E-lg) gametophyte (Fig. 1), and greenish-yellow 

branches originated the corresponding E-gy gametophyte (Gelli 2013). 

Variations in the colors of K. alvarezii may lead to new germplasm banks for 

vegetatively propagated individuals; therefore, the characterization of new strains is a strategy 

designed to increase the production of carrageenan (Tan et al. 2022). Araújo et al. (2023) 

reported differences in the chemical composition of K. alvarezii strains cultivated in Ubatuba 

Bay, suggesting distinct potential applications for each strain. Choosing a suitable site for 

growing seaweed is essential since abiotic factors and their interactions in the cultivation area 

affect their development and, consequently, their productivity (Bulboa and Paula 2006; 

Roleda and Hurd 2019; Solorzano-Chavez et al. 2019). Furthermore, it is fundamental to 

highlight the importance of ex situ gene banking to the conservation of eucheumatoid genetic 

resources (Gonzaga et al. 2025), as well as the improvement of carragenan extraction 

techniques for enhancing efficiency and reducing environmental impacts (Mendes et al. 

2025). 

In Rhodophyta, light-harvesting complexes consist of phycobiliproteins that assemble 

into phycobilisomes on thylakoid surfaces, collecting light and transferring it to the 

mechanisms that convert light energy into chemical energy, thereby enabling the organism to 

adjust its structure in response to irradiance fluctuations (Liu et al. 2024). Thus, red algae can 

adjust the composition and density of their light rods when the environment changes (Liu et 

al. 2024) which means that chromatic variations in strains selected in the present study may 

influence their physiological responses owing to pigmentar characteristics. Furthermore, 

distinct physiological responses between diploid-haploid organisms were reported in several 

studies that predicted differences based on ploidy, reproductive phase, and complexity of life 

history (Hughes and Otto 1999; Albecker et al. 2021; Faria and Plastino 2023). 
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The present study aimed to investigate the growth, photosynthesis (in vivo chlorophyll 

a fluorescence), pigment concentrations, and total soluble proteins of the new gametophytic 

strains of K. alvarezii. We hypothesized that the light-green (E-lg) and greenish yellow (E-gy) 

gametophytic strains would perform like the pale-brown gametophytic strain (E-br), but 

differently from the brown tetrasporophytic strain (T-br). To test this hypothesis, we 

evaluated different physiological and biochemical responses of different color strains of K. 

alvarezii cultivated over one year in Ubatuba bay. 

 

3.3 Material and Methods 

Algal material and cultivation site  

Four color strains of Kappaphycus alvarezii were studied: the brown tetrasporophyte 

(T-br; Fig. 2a), the gametophytic pale-brown “Edison de Paula” strain (E-br; Fig. 2b), and the 

gametophytic light-green (E-lg, Fig. 2c) and greenish-yellow (E-gy, Fig. 2d) “Edison de 

Paula” strains. The last two strains originated from the gametophytic pale-brown “Edison de 

Paula” strain (E-br).  

The four strains were cultivated at the Ubatuba Bay (Experimental Marine Farm of the 

Fisheries Institute), in São Paulo state, Brazil (23°27′5.8″S 45° 02′49.3″W) (Fig. 3), in a 

floating raft system (Gelli et al. 2024), which was assembled with two parallel cables, which 

were kept on the surface by floats made of 3 m-PVC tubes. The cables were separated at a 

distance of 2.5 m, forming a frame, and secured at the ends by iron anchors weighing 

approximately 50 kg. Within this floating raft system, 80 plants (70-100 g fresh weight, FW) 

were attached (20 plants of each strain; T-br, E-br, E-lg, and E-gy) along eight ropes, using the 

“tie-tie” system. For each rope of the floating raft, ten plants were tied at distance of 20 cm 

from the cable and 27 cm between them, and the depth of approximately 50 cm from the 
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surface. The positioning of the plants on the rope was determined randomly by drawing the 

numbers that correspond to each position of the floating raft (1 to 80), as shown in the 

schematic illustration (Fig. 4a-b). Branches of T-br strain (n=20) were positioned in the first 

20 numbers drawn, followed by the E-br, E-lg e E-gy strains. This procedure was repeated in 

each 45 day-growth cycle, when seaweeds were harvested, and new plants were tied. A total 

of 8 consecutive growth cycles were conducted (cycle 1: August-September/2022, cycle 2: 

October-November/2022, cycle 3: November-December/2022, cycle 4: January-

February/2023, cycle 5: February -March/2023, cycle 6: April-May/2023, cycle 7: May-

June/2023, and cycle 8: July-August/2023). 

Growth rates based on fresh mass variation of 20 plants of each strain (n=20) were 

determined for the 8 consecutive growth cycles. Biochemical and photosynthesis analyses 

were conducted in four plants of each strain (n=4), which were randomly selected by drawing 

the numbers of their positioning on the rope in each growth cycle. These analyses were 

performed in the following season and growth cycle: Winter: cycle 1 (August-

September/2022), Spring: cycle 3 (November-December/2022), Summer: cycle 5 (February-

March/2023), and Autumn: cycle 7 (May-June/2023). 

  

Abiotic Data 

Abiotic data (water transparency, temperature and salinity) were recorded in working 

days at around 9:00 a.m. from August 15th, 2022, to August 17th, 2023, without replicates. 

Considering that the number of working days varied among the months, we took into 

consideration the shortest month, February of 2023, which had 24 working days. To 

standardize the other months to the same data number (n=24), we excluded data of the initial 

and final days of the month until to reach an equal number of data. 
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Water transparency was measured using a Secchi Disk, and temperature and salinity 

were measured using an alcohol thermometer and a refractometer, respectively (n=24). 

Rainfall index was based on the monthly average recorded by three meteorological stations 

(n=3) closest to the cultivation site, and information available at the National Institute of 

Meteorology (INMET). 

 

Growth Rate (GR) 

At the end of each 45 day-growth cycle, seaweeds were harvested, cleaned to 

eliminate epiphytes, and weighed. Fresh mass (FW) of each color strain (n=20) was recorded 

using a precision electronic balance. The growth rates (GR, % d-1) were calculated as GR = 

[(Bf/Bi)1/t − 1] x 100 %, where Bi = initial mass, Bf = final mass at the harvest, and t = time in 

days (Yong et al. 2013). 

 

Photosynthetic performance  

Photosynthetic performance was evaluated by in vivo chlorophyll a fluorescence, and 

measurements were made 4 h after sunrise (n = 4), using an underwater Diving-PAM 

fluorometer (Walz®, Germany). Apical segments were arranged on a closed compartment to 

avoid overlapping and acclimated in the dark for 10 min for exposure to PSII. We used 12 

levels of irradiance to construct electron transport rate (ETR) × photosynthetically active 

radiation (PAR) curves: 7, 25, 50, 72, 107, 147, 210, 301, 460, 688, 1,038 and 1,750 µmol 

photons m-2 s-1. Exposure time of apical segments in each irradiance was 0.8 s interspersed by 

15 s, and the “light curve” option on the equipment was selected to obtain “fast light curves” 

(Suggett et al. 2011). These data were used to construct Electron Transport Rate (ETR) x 

Irradiance (I) curves (Suggett et al. 2011). ETR was calculated as rETR=ΔF/Fm’ x EPAR x 
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0.15, where (ΔF/Fm’ = Y) represents the measured effective photochemical efficiency, EPAR 

is the incident PAR irradiance expressed in µmol photons m-2 s-1, and 0.15 is the fraction of 

incident light absorbed directly by PSII, equivalent to red algae (Figueroa et al. 2003). 

Absorbance is the fraction of incident light absorbed by algae, and the ETR x PAR curves 

were calculated according to the model by Platt et al. (1982) as P = PS*[1-exp(-

α*I/PS)]*[exp(-β*I/PS)], where P = photosynthesis, PS = photosynthetic saturation, α = 

photosynthetic efficiency, β = photoinhibition, and I = irradiance. The following 

photosynthetic parameters were calculated (Schreiber 2004): photosynthetic efficiency (α), 

maximum electron transport rate (ETRmax), saturation irradiance (Ek), and effective 

photochemical efficiency (ΔF/Fm’). 

 

Extraction and quantification of photosynthetic pigments  

 Phycobiliprotein extractions were carried out at 4 °C according to Kursar et al. (1983) 

modified by Plastino and Guimarães (2001). Apical segments of each strain (500 mg FW, 

n=4) were powdered in liquid nitrogen, followed by the addition of 4 mL of phosphate buffer 

50 mM, pH 5.5. Crude extracts were centrifuged at 20,550 rpm for 20 min. The supernatant 

containing phycobiliproteins, including phycoerythrin (PE), phycocyanin (PC), and 

allophycocyanin (APC), was separated, and kept in sealed vials at 4 °C until reading in 

spectrophotometer (Epoch 2-BioTek; BioTek Instruments, Winooski, Vermont, USA). 

Chlorophyll a (Chla) and total carotenoids (Ca) were extracted after dissolving the pellet from 

the previous procedure in methanol (addition of 4 mL) and then centrifuging at 10,730 rpm 

for 15 min. PE, PC, and APC concentrations were calculated according to Kursar et al. 

(1983), and Chla and Ca concentrations were calculated according to Torres et al. (2014). 

Results were expressed in µg g-1 (FW). 
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Extraction and quantification of total soluble proteins 

Algal mass (100 mg FW, n=4) was powdered in liquid nitrogen and carried in 

phosphate buffer (0.2 M, pH 8.0, 5 mM EDTA, 1 mM DTT) in the proportion of 1 g fresh 

mass per 10 mL g-1. After extraction, the homogenates were centrifuged (12,000 rpm; 4 °C; 

15 minutes). Total soluble proteins (TSP) were determined by UV-vis spectrophotometry 

(Shimadzu – UV 1800, 595 nm), and Coomassie Blue solution (Bio-Rad) was added 

according to Bradford (1976). Protein concentration was determined using bovine serum 

albumin (BSA, Bio-Rad, standard curve), and results were expressed in mg g-1 (FW). 

 

Data analysis 

The assumptions of normality and homogeneity of variances were tested using the 

Shapiro-Wilk and Levene tests, respectively. When necessary, logarithmic transformation was 

employed (x = log (x + 1)) and tested again (Zar 1996). Abiotic factors (temperature, seawater 

transparency, salinity and rainfall) were analyzed by one-way factorial ANOVA. Growth rate 

(GR), in vivo chlorophyll a fluorescence (ETRmax, α, Ek, ΔF/Fm’), pigment concentrations 

(PE, PC, APC, Chla, Ca), and TPS were analyzed by two-way factorial ANOVA (independent 

variables: strains and growth cycles). When ANOVA results were significant, Tukey's a 

posteriori multiple comparison test was used to establish significant differences among the 

independent variables (GR, ETRmax, Ek, and PC). In other cases, Tukey's a posteriori test was 

used to establish significant differences in a single independent variable owing to the lack 

interaction between independent variables: Growth Cycles (α, ΔF/Fm’, Ca, and TSP) and 

Strains (PE and APC). Principal Component Analysis (PCA) was also performed on abiotic 
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data and all variables analyzed. Statistical analyses were performed using the Past 4.03 

program (Oyvind Hammer), considering p < 0.05. 

 

3.4 Results 

Abiotic Data 

Significant differences were observed in abiotic data among the different growth cycles of 

Kappaphycus alvarezii strains throughout the cultivation period, from August/2022 to 

August/2023 (Supplementary Information, Tables SI 1-2). Temperature, water transparency, 

salinity and rainfall showed a seasonal variation (Fig. 5a-d). The highest temperature averages 

were recorded during the summer, at the growth cycles 4 and 5 (25.4 ± 1.5 oC; 25.7 ± 0.9 oC, 

respectively), as well as the highest seawater transparency average of 298 ± 53 cm (Fig. 5a, 

b). On the other hand, during the winter, seawater temperatures were lower (19.9 ± 0.8 oC), as 

well as the seawater transparency (144.2 ± 58.4 cm). Furthermore, the lowest salinity average 

(31.3 ± 4.2) was recorded in the spring as a result of increased rainfall averages (390 ± 32 mm 

in December) (Fig. 5c-d, Supplementary Information, Tables SI 1-2). 

 

Growth Rates  

Growth rates (GR) varied among different K. alvarezii strains and growth cycles (F2,32 

= 6.6, p = 0.000), and when comparing the growth rates of different strains in each growth 

cycle, the tetrasporophytic strain (T-br) displayed higher growth rates than the gametophytic 

strains (Fig. 6, Table 1). The E-lg strain showed lower growth rates in autumn (cycle 6, Fig. 

6). Comparing growth rates among different growth cycles, the four strains showed seasonal 

variation throughout the cultivation period. Overall, all strains presented higher growth rates 
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in the summer (cycle 5, Fig. 6), and lower growth rates were observed at the end of winter 

(cycle 1, Fig. 6). Comparing each strain throughout the growth cycles, T-br showed the 

highest growth rates in cycle 5 (6.7 ± 0.7 % d-1) compared to cycle 1 (4.4 ± 0.5 % d-1), while 

E-br showed the highest growth rate in cycle 5 (4.8 ± 0.7 % d-1) compared to the cycle 1 (2.5 

± 0.4 % d-1), and E-lg showed the highest growth rate in cycle 5 (4.3 ± 0.8 % d-1) compared to 

cycle 1 (2.3 ± 0.3 % d-1). E-gy showed the highest growth rate in cycle 5 (4.4 ± 0.7 % d-1) 

compared to cycle 1 (2.7 ± 0.4 % d-1) (Fig. 6). 

 

Photosynthetic performance 

Comparing the photosynthesis (ETR) and irradiance curves (PxI curves) among the 

four K. alvarezii strains (Fig. 7a-d), the tetrasporophyte (T-br) and the E-br gametophyte had 

similar patterns, unlike the E-gy and E-lg gametophytes (Fig. 7a-d). Generally, the latter two 

gametophytic strains had PxI curves with higher ETR than the T-br and E-br strains, except in 

the winter (Fig. 7a). 

Maximum electron transport rates (ETRmax) varied among different K. alvarezii strains 

and seasons (Table 1). Comparing the ETRmax among the four strains in each season, it was 

evident that the tetrasporophyte (T-br) had lower ETRmax than the E-gy gametophyte, except 

in the winter when E-lg gametophyte had higher ETRmax (Table 1; Fig. 8a). Comparing 

ETRmax of each strain throughout the seasons, the T-br strain presented ETRmax between 

winter (2.5 ± 0.3 µmol e m-2 s-1) and autumn (3.1 ± 0.7 µmol e m-2 s-1), while the E-br strain 

presented ETRmax between spring (1.8 ± 1.0 µmol e m-2 s-1) and winter (3.6 ± 1.1 µmol e m-2 

s-1), and the E-lg strain presented ETRmax between spring (2.4 ± 0.1 µmol e m-2 s-1) and winter 

(9.5 ± 4.0 µmol e m-2 s-1). The E-gy strain presented ETRmax between spring (5.3 ± 2.7 µmol e 

m-2 s-1) and summer (14.3 ± 3.0 µmol e m-2 s-1) (Fig. 8a). 
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Photosynthetic efficiency (α) of the four K. alvarezii strains varied only among 

different seasons (Table 1). The strains had higher α in the summer in comparison to spring 

and autumn (Table 1; Fig. 8b). The averages of α varied as follows: winter (0.05 ± 0.02), 

spring (0.04 ± 0.02), summer (0.06 ± 0.02), and autumn (0.04 ± 0.01) (Fig. 8b). 

Irradiance saturation (Ek) varied among strains and seasons (Table 1). After comparing 

the Ek of different K. alvarezii strains in each season, the E-lg gametophyte had higher Ek, but 

only at the end of winter (Table 1; Fig. 8c). Comparing Ek of each strain throughout the 

seasons, the T-br tetrasporophyte presented lower Ek in the winter (53.9 ± 29.0 µmol photons 

m-2 s-1) and higher Ek in the spring (101.1 ± 11.5 µmol photons m-2 s-1), while the E-br 

gametophyte presented Ek variation between 46.4 ± 113.7 µmol photons m-2 s-1 (autumn) and 

88.0 ± 27.5 µmol photons m-2 s-1 (winter). The Ek of the E-lg gametophyte varied from 58.4 ± 

10.6 µmol photons m-2 s-1 (spring) to 215.2 ± 93.6 µmol photons m-2 s-1 (winter), while Ek 

values of E-gy gametophyte varied from 144.8 ± 60.2 µmol photons m-2 s-1 (winter) to (209.0 

± 40.7 µmol photons m-2 s-1 (summer) (Fig. 8c). 

Effective photochemical efficiency (ΔF/Fm’) varied among different seasons (Table 1), 

and the four strains had lower ΔF/Fm’ during the spring when compared to values observed in 

other seasons (Table 1; Fig. 8d). Comparing ΔF/Fm’ throughout the seasons, the averages of 

the four strains were as: winter (0.49 ± 0.06), spring (0.38 ± 0.08), summer (0.44 ± 0.07), and 

autumn (0.51 ± 0.05) (Fig. 8d). 

 

Photosynthetic pigment and protein concentrations 

Phycoerythrin (PE) concentrations varied among different K. alvarezii strains, but not 

among seasons (Table 1). The highest average PE concentrations were observed in T-br 

tetrasporophyte (164.8 ± 18.4 µg g-1 FW), intermediate values were observed in E-br and E-
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gy gametophytes (106.8 ± 8.8 µg g-1 FW, 94.5 ± 34.1 µg g-1 FW), and E-lg gametophyte had 

the lower PE concentrations (43.8 ± 9.9 µg g-1 FW), (Table 1; Fig. 9a). 

Phycocyanin (PC) concentrations varied among different strains and seasons (Table 1, 

Fig. 9b). During the cultivation period, the T-br tetrasporophyte had higher PC concentration 

compared to all gametophytic strains (Table 1; Fig. 9b), varying from 103.2 ± 10.9 µg g-1 FW 

(summer) to (139.7 ± 43.0 µg g-1 FW (spring), while the E-br strain showed PC 

concentrations between (44.1 ± 7.4 µg g-1 FW (spring) and (62.7 ± 22. µg g-1 FW (winter). 

The E-lg and Egy gametophytes showed, respectively, lower PC concentrations: 33.7 ± 10.1 

µg g-1 FW in autumn and 54.4 ± 12.3 µg g-1 FW in spring, 16.1 ± 4.7 µg g-1 FW (spring) and 

30.8 ± 12.3 µg g-1 FW autumn) (Fig. 9b). 

 Allophycocyanin (APC) concentrations varied among different strains (Table 1). The 

highest average APC concentrations were observed in the T-br tetrasporophyte (58.1 ± 8.5 µg 

g-1 FW) when compared to the gametophytic strains (24.1 ± 6.2 µg g-1 FW, 29.6 ± 10.2 µg g-1 

FW, and 33.2 ± 15.0 µg g-1 FW for E-br, E-lg, and E-gy strains, respectively) (Table 1; Fig. 

9c). 

Chlorophyll a (Chla) concentrations of the four K. alvarezzi did not vary among 

strains and seasons, and the average was 39.0 ± 13.4 µg g-1 FW (Table 1). However, total 

carotenoids (Ca) concentrations varied among different seasons (Table 1), and the higher Ca 

concentrations were observed in summer (1.08 ± 0.48 µg g-1 FW) than the other seasons 

(Table 1; Fig. 9d). 

Total soluble protein (TSP) concentrations presented by the four K. alvarezii varied 

among different seasons (Table 1), with the highest TSP concentrations observed in the spring 

compared to other seasons. In the winter and autumn, the strains had intermediate 
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concentrations, while the lowest TSP concentrations were recorded in the summer (Table 1; 

Fig. 10). 

 

Principal Component Analysis  

Principal component analysis (PCA) was performed to evaluate the correlation of 

variables measured (growth and metabolite concentrations), abiotic factors of cultivation site 

and the four K. alvarezzi strains (Table 2, Fig. 11). The first two principal components 

accounted for 77.926% of total variance (62.198% for axis 1 and 15.728% for the axis 2). 

Axis 1 was mainly influenced by phycobiliproteins (PC, 0.5864; PE, 0.4489; APC, 0.3246) in 

the positive side, and Ek (-0.3951) and ETR (-0.3776) in the negative side (Table 1). Axis 2 

was mainly influenced by APC (0.7285), ETR (0.5185), and Ek (0.3430) in the positive side. 

PCA resulted in three groups: 1. T-br tetrasporophytes grouped on the positive side of axis 1 

which was related to the higher phycobiliprotein concentrations (PE, PC and APC), 2. E-br 

gametophytes grouped also in the positive side of axis 1 but in the negative side of axis 2 due 

to the higher PE and PC concentrations but lower APC concentrations, and 3. E-lg and E-gy 

gametophytes grouped on the negative side of axis 1 due to lower phycobiliprotein 

concentrations and in the positive side of axis 2, which was related to higher electron 

transport rates (ETR) and saturation irradiance (Ek) (Table 2, Fig. 11). 

 

3.5 Discussion  

The four Kappaphycus alvarezii strains cultivated in Ubatuba bay, southeastern Brazil, 

showed a seasonal variation in growth rates, photosynthetic efficiency, effective 

photochemical efficiency, and concentrations of carotenoids and total soluble proteins. In 

general, growth rates of the four strains were higher during the summer and lower during the 
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winter, and these results are related to seasonal variations of temperature, as reported to T-br 

tetrasporophyte by Paula et al. (2002) and Paula and Pereira (2003), and also to T-br 

tetrasporophyte and E-br gametophyte (cited as G11 strain) by Hayashi et al. (2007a), and 

Solorzano-Chavez et al. (2019). Similarly, growth rates of K. alvarezii color strains in the 

tropical waters of Yucatán, Mexico, were also affected by temperature (Muñoz et al. 2004). 

In the same way of growth responses, the photosynthetic efficiency of the four K. 

alvarezzi strains were higher in the growing season (summer). On the other hand, the values 

of effective photochemical efficiency of the four K. alvarezzi strains were lower in higher 

temperatures (summer and spring), and similar results were reported to tropical specimens of 

Hypnea pseudomusciformis Nauer, Cassano & M.C. Oliveira (Rhodophyta) submitted to 

laboratory simulation of marine heatwaves with increase of 4oC and 6oC in the temperature 

annual average (Nauer et al. 2022). 

Concentrations of total soluble proteins of the four K. alvarezii strains were also lower 

during the summer, and these results could be explained by the high nitrogen metabolism 

associated with higher growth rate of K. alvarezii strains during this season summer. The 

protein concentrations obtained for the four K. alvarezii in the present study were lower than 

those reported by Navarte et al. (2022) ranging from 1.02 % to 4.61 % for ten strains of K. 

alvarezii cultivated under land-based hatchery conditions in the Philippines. 

Carotenoids of the four K. alvarezzi varied seasonally, with higher concentrations in 

the summer when the water transparency was higher than in the other seasons. These results 

can be explained by the key role of carotenoids to protect photosynthetic organisms from the 

harmful effects of excess exposure to light (Hashimoto et al. 2016, Borburema et al. 2022). 

Growth rates also varied among different K. alvarezii strains, and tetrasporophytic 

strain (T-br) had higher growth rates than the other three gametophytic strains. In our study, 
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T-br tetrasporophyte showed the growth rates ranging from 4.4 ± 0.5 % d-1 to 6.7 ± 0.7 % d-1, 

and growth rates for E-br gametophyte ranged from 2.5 ± 0.4 % d-1 to 4.8 ± 0.7 % d-1, and 

these ranges of growth rates were lower than those reported by other studies performed with 

the same strains and cultivation site (Table 3). Hayashi et al. (2007b) determined that the best 

cultivation conditions for brown tetrasporophyte of K. alvarezii in Ubatuba bay (growth cycle 

of 28 days, and density of 12 plants m-2), and obtained growth rates of 5.2-7.2 % d-1. Notably, 

Solorzano-Chavez et al. (2019) reported higher growth rates, 5.3-9.0 % d-1 for brown 

tetrasporophyte and 3.3-6.6 % d-1 for pale-brown gametophyte (cited as G11 strain) of K. 

alvarezii. Therefore, our study reported lower average growth rates for T-br tetrasporophyte 

and E-br gametophyte, which could be related to the cultivation system, as the longer growth 

cycle (45 days), and variations in environmental factors during the cultivation period. 

The higher growth rates observed in T-br tetrasporophyte than the three gametophytic 

strains could be related to the ploidy, As in other studies with red algae, ploidy determined 

physiological differences among diploid and haploid phases in Gracilaria species (Destombe 

et al. 1989; Engel et al. 2001), and in Gracilariopsis tenuifrons (C.J.Bird & E.C.Oliveira) 

Fredericq & Hommersand (Faria and Plastino 2023). In contrast, the growth rates of 

laboratory-cultured diploid tetrasporophytes did not differ significantly from those of the 

haploid gametophytic progeny of K. alvarezii from the Philippines (Hinaloc and Roleda 

2021). 

Phycobiliprotein concentrations, as phycoerythrin (PE) and allophycocyanin (APC) of 

the K. alvarezii varied among the strains, but not among seasons, however phycocyanin (PC) 

concentrations varied among strains and seasons. In general, higher phycobiliprotein 

concentrations were observed in T-br tetrasporophyte, while intermediate and lower 

concentrations were observed in gametophytic strains. However, the agarophyte Gracilaria 

caudata J. Agardh showed different responses depending on the collecting site, phase and 
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irradiance levels under laboratory conditions (Faria et al. 2017). For example, under low 

irradiance, female gametophytes had higher PE and PC concentrations than tetrasporophytes 

in G. caudata collected in the northeastern and southeastern Brazil (Faria et al. 2017). 

Therefore, in the present study, the phycobiliprotein concentrations of the four K. alvarezii 

strains are related to the thallus color instead of diploid or haploid phases. However, different 

results were observed in red and green morphotypes of K. alvarezii, which showed similar 

phycoerythrin (PE) levels, but the phycocyanin (PC) and allophycocyanin (APC) 

concentrations were 2-fold higher in the green than in the red morphotype (Aguirre-Von-

Wobeser et al. 2001). 

Although the present study demonstrated that temperature contributed to variations in 

photosynthesis efficiency (α) and effective photochemical efficiency (ΔF/Fm'), no evidence 

showed better photosynthesis performance at elevated temperatures, possibly owing to the 

narrow range of temperature during the period studied, similar to other studies with red algae 

(Liu et al. 2017; Fujimoto et al. 2015; Vo et al. 2015; Faria and Plastino 2022). 

Photosynthetic parameters, as maximum electron transport rates (ETRmax) and 

irradiance saturation (Ek) varied among different K. alvarezii strains and seasons, and the E-lg 

and E-gy gametophytes had higher ETRmax and Ek than T-br tetrasporophyte and E-br 

gametophyte. In PCA, these photosynthetic parameters grouped E-lg and E-gy gametophytes 

in the positive side of axis 2, and on the negative side of axis 1 due to lower phycobiliprotein 

concentrations. On the other hand, T-br tetrasporophytes and E-br gametophytes formed 

distinc groups related to higher phycobiliprotein concentrations. 

In conclusion, results of PCA did not support the hypothesis of similarity on among 

the three gametophytic strains of K. alvarezzi, although the E-lg and E-gy gametophytes were 

originated from the E-br gametophyte. The E-lg and E-gy gametophytes were grouped 
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separately mainly due to higher ETRmax and Ek than T-br tetrasporophyte and E-br 

gametophyte. Furthermore, our results corroborate the significant differences between T-br 

tetrasporophyte and gametophytic strains of K. alvarezii cultivated in Ubatuba bay, indicating 

that tetrasporophytic strain is more suitable for commercial cultivation. However, novel 

strains with different physiological and biochemical characteristics are needed to increase the 

genetic diversity and to expand the cultivation of K. alvarezii in the region. 
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Table 3-1 Results analyzed by two-way ANOVA to examine the influence of independent 

variables on the two dependent variables (strains and periods) of K. alvarezii cultivated in 

Ubatuba Bay, southeastern Brazil. Strains: Brown tetrasporophyte, T-br; Pale-brown Edison 

de Paula, E-br; Light-green Edison de Paula, E-lg; Greenish-yellow Edison de Paula, E-gy). 

Periods: cycle 1: August-September/2022 (Winter), November-December/2022 (Spring), 

February-March/2023 (Summer), May-June/2023 (Autumn)  

Variable 
Source of 

variation 
df F (2,16) p-value 

Maximum electron transport 

rate (ETRmax) 
Period 

3 8.62 0.000 * 

  Strain 3 32.7 0.000 * 

  Interaction 9 4.50 0.000 * 

Photosynthetic efficiency (α) Period 3 5.6 0.002 * 

  Strain 3 1.0 0.410 

  Interaction 9 1.8 0.282 

Saturation irradiance (Ek) Period 3 0.2 0.881 

  Strain 3 15.6 0.000 * 

  Interaction 9 2.6 0.001 * 

Effective photochemical 

efficiency (ΔF/Fm’) 
Period 

3 14.4 0.000 * 

  Strain 3 4.8 0.005 * 

  Interaction 9 1,2 0.338 

Phycoerythrin (PE) Period 3 1.7 0.178 

  Strain 3 44.6 0.000 * 

  Interaction 9 2.0 0.064 

Phycocianin (PC) Period 3 1.0 0.410 

  Strain 3 102.8 0.000 * 

  Interaction 9 2.6 0.016 * 

Allophycocinin (APC) Period 3 2.5 0.072 

  Strain 3 10.7 0.000 * 

  Interaction 9 0.9 0.533 

Chlorophyll a (Chla) Period 3 2.8 0.050 

  Strain 3 2.4 0.078 

  Interaction 9 1.3 0.268 

Carotenoids (Ca) Period 3 3.3 0.028 * 
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  Strain 3 1.4 0.265 

  Interaction 9 1.1 0.363 

Total soluble proteins (TPS) Period 3 17.3 0.000 * 

  Strain 3 4.6 0.776 

  Interaction 9 1.2 0.292 

* bold, significant correlation (p-value < 0.05)
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Table 3-2: Pearson´s correlation coefficients among abiotic factors and variables analyzed in 

color strains of Kappaphycus alvarezii cultivated in Ubatuba bay during four growth cycles: 

August-September/2022 (Winter), November-December/2022 (Spring), February-March/2023 

(Summer), and May-June/2023 (Autumn). Color strains: Brown tetrasporophyte, T-br; Pale-

brown Edison de Paula, E-br; Light-green Edison de Paula, E-lg; Greenish-yellow Edison de 

Paula, E-gy 

Abiotic factors/Metabolites 

(abbreviations) 

Principal Components 

Axis 1 Axis 2 

Water temperature (TE) 0.0024 0.0535 

Salinity (SA) 0.0026 0.0381 

Water transparency (TR) 0.0072 0.1235 

Growth rates (GR) 0.1601 0.1814 

Electron transport rate (ETR) -0.3776 * 0.5185 * 

Photosynthetic efficiency (α) -0.0018 0.0075 

Saturation irradiance (Ek) -0.3951 * 0.3430 * 

Effective photochemical efficiency (ΔF/Fm´) -0.0116 -0.0022 

Phycoerythrin (PE) 0.4489 * 0.0726 

Phycocianin (PC) 0.5864 * 0.0218 

Allophycocinin (APC) 0.3246 * 0.7285 * 

Chlorophyll a (Chla) 0.1531 0.1112 

Carotenoids (Ca) 0.0333 0.0347 

Total soluble proteins (TSP) -0.0110 -0.1046 

Explicability (%) 62.198 15.728 

* bold, significant importance of the variable on the axes 
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Table 3-3 Studies performed with brown tetrasporophyte (T-br strain) and pale-brown “Edison 

de Paula” gametophyte (E-br strain, formely named G11 strain) of Kappaphycus alvarezii 

cultivated at Experimental Marine Farm of the Fisheries Institute, Ubatuba bay, southeastern 

Brazil  

Growth rate (% d-1) 
Cultivation 

period 

Month/Year 

Tempe

rature 

(oC) 

Growth cycle 

(days) 
References 

T-br 

strain 

E-br 

strain 

6.1 – 8.9 3.3 – 7.2a March/1997-

February/1998 

- 30 Paula et al. (1999) 

 

4.1 – 8.2  - October/1995-

October/1996 

19 - 28 27 – 37  Paula and Pereira (2003) 

5.0 – 6.5 1.3 – 4.8 February/2001-

December/2001 

20 - 28 30 Hayashi et al. (2007a) 

- 5.2 – 7.2 - - 28 Hayashi et al. (2007b) 

10.9b - - - 40 Hayashi et al. (2008) 

6.3 - - - 30 Roldán et al. (2017) 

5.3 – 9.0 3.3 – 6.6 
August/2013-

June/2014 

20 - 31 30 Solorzano-Chavez et al. 

2019) 

4.3 – 6.7 2.2 – 4.8 August/2022-

July/2023 

19 - 26 45 Present study 

a after 7 days; b cultivation in tanks and later in open-sea cultivation  
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Fig 3–1 Edison de Paula gametophyte of Kappaphycus alvarezii cultivated in the 

Experimental Marine Farm of the Fisheries Institute, Ubatuba bay, southeastern Brazil. (a) 

Pale-brown Edison de Paula gametophyte with light-green branches, which originated from 

the pale-brown branches. (b) Detailed of one specimen with both pale-brown branches and 

light-green branches, which were isolated and propagated separately, resulting in two strains: 

pale-brown Edison de Paula gametophyte (E-br) and light-green Edison de Paula 

gametophyte (E-lg). Photos: V. C. Gelli´s personal archive, (2013).  

a b 
E-lg 

E-br 
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Fig 3–2 Macroscopic morphology of four color strains of Kappaphycus alvarezii cultivated in 

the Experimental Marine Farm of the Fisheries Institute, Ubatuba bay, southeastern Brazil. (a) 

Brown tetrasporophyte; (b) Pale-brown Edison de Paula gametophyte; (c) Light-green Edison 

de Paula gametophyte; (d) Greenish-yellow Edison de Paula gametophyte. Scale bar = 5 cm.  
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Fig 3–3 Cultivation site of Kappaphycus alvarezii strains in the Experimental Marine Farm of 

the Fisheries Institute, Ubatuba Bay, São Paulo state, southeastern Brazil. 
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Fig 3–4 Floating raft cultivation system of Kappaphycus alvarezii color strains in Ubatuba 

bay, southeastern Brazil. (a) Schematic illustration of the positioning of each color strain 

(n=20) on the ropes. (b) General aspect of the floating raft showing one rope with plants of 

different color strains (red arrow). Brown tetrasporophyte (◼ T-br); Pale-brown Edison de 

Paula gametophyte (⚫ E-br); Light-green Edison de Paula gametophyte (    E-lg); Greenish-

yellow Edison de Paula gametophyte ( E-gy).   

a b 
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Fig 3–5 Variations of Temperature (a), Water Transparency (b), and Salinity (c) in the 

cultivation site of Kappaphycus alvarezii in Ubatuba bay. Data represent averages ± SD (n = 

24) recorded during the eight 45 day-growth cycles (cycle 1: August-September/2022, cycle 

2: October-November/2022, cycle 3: November-December/2022, cycle 4: January-

February/2023, cycle 5: February -March/2023, cycle 6: April-May/2023, cycle 7: May-

June/2023, and cycle 8: July-August/2023). Rainfall Index (d) was represented by monthly 

averages ± SD (n=3) recorded by the three meteorological stations closest to the cultivation 

site. Different letters represent significant differences among growth cycles or months (one-

way ANOVA, Tukey´s multiple comparison test, p < 0.05). 
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Fig 3–6 Growth rates (GR) of Kappaphycus alvarezii color strains cultivated in Ubatuba bay, 

from August/2022 to August/2023, comprising the eight 45 day-growth cycles (Mean ± SD, n 

= 20). Brown tetrasporophyte (T-br); Pale-brown Edison de Paula gametophyte (E-br); Light-

green Edison de Paula gametophyte (E-lg); Greenish-yellow Edison de Paula gametophyte 

(E-gy). Growth cycles (1: August-September/2022, 2: October-November/2022, 3: 

November-December/2022, 4: January-February/2023, 5: February-March/2023, 6: April-

May/2023, 7: May-June/2023, and 8: July-August/2023. Different letters represent significant 

differences among growth cycles or months (Two-way ANOVA, Tukey´s multiple comparison 

test, p < 0.05). 
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Fig 3–7 Photosynthesis X Irradiance curves of the four Kappaphycus alvarezii strains 

cultivated in Ubatuba bay for the 45 day-growth cycle in each season. Photosynthesis based 

on data of in vivo chlorophyll a fluorescence (Electron Transport Rate, ETR) measured at the 

end of 45 day-growth cycle, and Photosynthetically Active Radiation (PAR – µmol photons 

m-2 s-1). (a) cycle 1: August-September/2022 (Winter), (b) cycle 3: November-December/2022 

(Spring), (c) cycle 5: February-March/2023 (Summer), and (d) cycle 7: May-June/2023 

(Autumn). Brown tetrasporophyte (T-br); Pale-brown Edison de Paula gametophyte (E-br); 

Light-green Edison de Paula gametophyte (E-lg); Greenish-yellow Edison de Paula 

gametophyte (E-gy). 
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Fig 3–8 Photosynthetic parameters (mean ± SD, n=4) based on in vivo chlorophyll a 

fluorescence of Kappaphycus alvarezii strains cultivated in Ubatuba bay for the 45 day-

growth cycle in each season. (a) Maximum electron transport rate (ETRmax); (b) 

Photosynthetic Efficiency (α), (c) Saturation Irradiance (Ek); and (d) Effective Photochemical 

Efficiency (ΔF/Fm’). Blue columns represent the averages of the four strains together since 

there were no significant differences among them. Brown tetrasporophyte (T-br); Pale-brown 

Edison de Paula gametophyte (E-br); Light-green Edison de Paula gametophyte (E-lg); 

Greenish-yellow Edison de Paula gametophyte (E-gy). Winter (WIN), Spring (SPR), Summer 

(SUM), Autumn (AUT). Different letters represent significant differences among growth 

cycles or months (Two-way ANOVA, Tukey´s multiple comparison test, p < 0.05). 
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Fig 3–9 Pigment concentrations (mean ± SD, n=4) determined by in vivo chlorophyll a 

fluorescence of Kappaphycus alvarezii strains cultivated in Ubatuba bay for the 45 day-

growth cycle in each season.  (a) Phycoerythrin (PE) and (c) allophycocyanin concentrations 

(APC): the columns represent the averages of the four seasons together since there were no 

significant differences among the seasons. (b) Phycocyanin concentration (PC), and (d) Total 

Carotenoids concentrations (Ca) - blue columns represent the averages of the four strains 

together since there were no significant differences among them. Brown tetrasporophyte (T-

br); Pale-brown Edison de Paula gametophyte (E-br); Light-green Edison de Paula 

gametophyte (E-lg); Greenish-yellow Edison de Paula gametophyte (E-gy). Winter (WIN), 

Spring (SPR), Summer (SUM), Autumn (AUT). Different letters represent significant 

differences among growth cycles or months (Two-way ANOVA, Tukey´s multiple comparison 

test, p < 0.05). 
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Fig 3–10 Total soluble protein concentrations (mean ± SD, n=4) of Kappaphycus alvarezii 

strains cultivated in Ubatuba bay for 45 day-growth cycle in each season.  The blue columns 

represent the averages of the four strains together since there were no significant differences 

among them. Brown tetrasporophyte (T-br); Pale-brown Edison de Paula gametophyte (E-br); 

Light-green Edison de Paula gametophyte (E-lg); Greenish-yellow Edison de Paula 

gametophyte (E-gy). Seasons: Winter (WIN), Spring (SPR), Summer (SUM), Autumn (AUT). 

Different letters represent significant differences among seasons (Two-way ANOVA, Tukey´s 

multiple comparison test, p < 0.05). 
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Fig 3–11: Scatter diagram of plots of the first two principal component analysis axes of data 

on temperature (Temp), salinity (Salin), water transparency (Transp), growth rate (GR), 

maximum electron transport rate (ETRmax), photosynthetic efficiency (α), saturation irradiance 

(Ek), effective photochemical efficiency (ΔF/Fm´),  phycoerythrin (PE), phycocianin (PC), 

allophycocianin (APC), chlorophyll a (Chla); total carotenoids (Ca), and total soluble proteins 

(Prot) of Kappaphycus alvarezii strains cultivated in Ubatuba bay. Brown tetrasporophyte 

(black dots ●, T-br); Pale-brown Edison de Paula gametophyte (red dots ●, E-br); Light-green 

Edison de Paula gametophyte (green  dots ●, E-lg); Greenish-yellow Edison de Paula 

gametophyte (yellow dots ●,E-gy) cultivated for 45 day-growth cycles: 1 = August-

September/2022 (Winter), 3 = November-December/2022 (Spring), 5 = February-March/2023 

(Summer), 7 = May-June/2023 (Autumn).  
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Table S1 Summary of analyses of variance (one-way ANOVA) of abiotic data (water 

temperature, salinity and water transparency) measured in working-days at Kappaphycus 

alvarezii cultivation site (Experimental Marine Farm of the Fisheries Institute, Ubatuba bay, 

southeastern Brazil).   Minimum (Min.) and, maximum (Max.) values, and mean ± SD (n = 

24) for eight 45 day-growth cycles (cycle 1: August-September/2022, cycle 2: October-

November/2022, cycle 3: November-December/2022, cycle 4: January-February/2023, cycle 

5: February -March/2023, cycle 6: April-May/2023, cycle 7: May-June/2023, and cycle 8: 

July-August/2023). F statistical analysis of variance (ANOVA) of the ratio between the 

variation between the groups and the variation within the groups, and p statistically significant 

difference between the groups, at the 5% significance level. 

 

Environmental 

factors 

Growth 

cycles 

Min. Max. Mean ±SD F p 

Temperature 

(°C) 

1 18.0 21.0 19.9 ± 0.8 103.7 0.0000 

 2 20.0 23.0 22.0 ± 0.9     

  3 21.0 26.0 23.8 ± 1.3     

  4 21.5 27.0 25.4 ± 1.5     

  5 24.0 27.0 25.7 ± 0.9     

  6 22.0 25.0 23.4 ± 0.9     

  7 20.0 22.5 21.5 ± 0.7     

  8 19.0 22.0 20.8 ± 0.8     

Water 

Transparency 

(cm) 

1 40 290 144 ± 58 14.4 0.0000 

 2 70 360 238 ± 78     

  3 70 400 225 ± 101     

  4 150 335 261 ± 57     

  5 170 30 298 ± 53     

  6 100 340 268 ± 64     

  7 100 360 209 ± 74     

  8 100 260 159 ± 50     

Salinity (PSU) 1 30.0 37.0 34.2 ± 2.1 314.6 0.0000 

  2 29.0 34.0 32.3 ± 1.3     

  3 21.0 35.0 31.3 ± 4.2     
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  4 25.0 36.0 33.6 ± 2.5     

  5 26.0 36.0 34.2 ± 2.1     

  6 25.0 37.0 34.5 ± 3.3     

  7 32.0 37.0 36.0 ± 1.6     

  8 32.0 37.0 36.0 ± 1.2     

bold, significant correlation (p < 0.05) 
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Table S2 Summary of one-way ANOVA of monthly rainfall index (minimum (Min.) and 

maximum (Max.) values, mean ± SD, n = 3). Monthly rainfall average measured by the three 

meteorological stations closest to the Kappaphycus alvarezii cultivation site (Experimental 

Marine Farm of the Fisheries Institute, Ubatuba bay, southeastern Brazil). F statistical analysis 

of variance (ANOVA) of the ratio between the variation between the groups and the variation 

within the groups, and p statistically significant difference between groups at the 5% 

significance level. 

 

Month / Year Rainfall Index (mm) Mean ± SD F p 

Min. Max. 

August/2022 66 80 73 ± 7 94.8 0.000 

September/2022 234 254 243 ± 10    

October/2022 81 98 87 ± 10    

November/2022 273 315 297 ± 22    

December/2022 366 425 390 ± 32    

January/2023 207 219 214 ± 6    

February/2023 249 294 272 ± 22    

March/2023 167 197 181 ± 15    

April/2023 162 187 175 ± 13    

May/2023 123 201 162 ± 39    

June/2023 28 32 30 ± 2    

July/2023 46 82 64 ± 18    

August/2023 20 65 40 ± 23    

Bold, significant correlation (p < 0.05); SD, standard deviation 
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4.1 Abstract 

Kappaphycus alvarezii (Doty) L.M. Liao (Rhodophyta, Gigartinales) is a key source of κ-

carrageenan, widely used in food, cosmetic, and pharmaceutical industries. Since 1995, this 

species has been cultivated at the Experimental Marine Farm of the Instituto de Pesca in 

Ubatuba Bay, São Paulo, Brazil. Over three decades of cultivation, spontaneous color variants 

mailto:herrera.leandroa@gmail.com
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have emerged from the original brown tetrasporophyte and Edison de Paula (EP) pale-brown 

gametophyte. This study aimed to characterize two new gametophytic strains light-green (E-

lg) and yellowish-green (E-gy), and compare them with the pale-brown EP gametophyte (E-

br) and brown tetrasporophyte (T-br). Seedlings (n = 20 per strain) were cultivated on floating 

rafts in a “tie-tie” system, with 45-day growth cycles. Seasonal assessments included 

productivity, water content, total soluble carbohydrates, carrageenan and sulfate yields, and 

3,6-anhydrogalactose content. Abiotic factors (temperature, salinity, transparency) were also 

monitored. Productivity was highest for T-br during summer (8.5 ± 2.9 g m⁻² d⁻¹), while all 

strains showed reduced growth in cooler months. T-br and E-gy strains had significantly 

higher total carbohydrate levels in spring, and carrageenan yields peaked in winter (41.6 ± 

4.8 % DW), inversely correlated with temperature and salinity. Carrageenan composition was 

similar across strains, with average 3,6-anhydrogalactose content of 42.7 ± 3.7 % and 

seasonal peaks in sulfate content (29.8 ± 2.6 %). These results highlight seasonal influences 

on biochemical composition and suggest potential for selecting strains with enhanced 

carrageenan or carbohydrate yields. 

Keywords:  growth, seasonality, polysaccharides, 3,6-anhydrogalactose content, sulfate 

contente, Ubatuba Bay. 

 

4.2 Introduction  

Most rhodophytes synthesize sulfated galactan in their cell walls, forming specific 

linear polymers. These galactans produce carrageenan and variation in sulfation patterns 

modulate the physical characteristics of these polysaccharides in aqueous solutions, 

influencing their functional properties. In addition, these Galatians play crucial adaptive roles, 

such as moisture retention, cell concentration regulation, and structural strengthening in 

seaweeds (Usov 2011; Ciancia et al. 2020). 
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Florid starch, produced during photosynthesis, is a vital energy reserve during periods 

of low light or nutrient scarcity and is essential for the metabolism and ecological red algae 

adaptations (Yoon et al., 2006). Its less organized and more amorphous structure, compared to 

starch from higher plants, facilitates rapid energy mobilization, in addition to conferring 

greater water solubility and digestibility (Delattre et al. 2016). 

Starch from flowers has attracted interest in biotechnology due to its amorphous and 

highly branched structure. This makes it a promising glucose source for fermentation, 

especially in industries that require fast-processing substrates, such as bioethanol production 

(Paz-Cedeno et al., 2019). 

Carrageenans are extracted from several species of red algae, including Chondrus 

crispus Stackhouse, Hypnea musciformis (Wulfen) Lamouroux, Eucheuma denticulatum 

(Burman) Collins & Hervey and Kappaphycus alvarezii (Doty) Doty (Stanley 1987; Hayashi 

et al. 2007).  

Carrageenan is a generic name given to the family of sulfated polysaccharides 

composed of β-D-galactose and 3,6-α-anhydro-D-galactose subunits (Hayashi et al. 2007a; 

Van de Velde 2008; Ciancia et al. 2020), extracted from red algae (Véliz et al. 2017) and, 

together with alginates and agars, form a group of biopolymeric complex substances that are 

called phycocolloids. These natural polymers have the ability to form thermoreversible gels or 

viscous solutions in saline solutions. This gelling capacity gives these polysaccharides several 

applications (Van de Velde et al. 2002; Dalbelo 2017). 

The seaweed Kappaphycus alvarezii (Doty) L.M.Liao (Rhodophyta, Gigartinales) is 

originally from Southeast Asia and was introduced in Brazil in 1995 by the Fisheries Institute 

of São Paulo in partnership with the Biosciences Institute of the University of São Paulo 

(Paula et al. 1999; Reis et al. 2007) when considering the difficulties for the cultivation of 

native carrageenan algae (Oliveira 1990; Paula et al. 2002), as well as in several other 
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countries with the same commercial purposes (Paula et al. 2001; Nunes 2010), to carrageenan 

extraction (Ask and Azanza 2002; Paula et al. 2002). 

Chemical variations between the types of carrageenan determine different rheological 

properties and therefore different industrial applications (Véliz et al. 2017). The main 

commercially available carrageenans are kappa, iota and lambda types (Glicksman 1987). 

Kappa-carrageenan with a harder and more brittle gel; iota-carrageenan with a more elastic 

and softer gel; and lambda does not form a gel, only liquids with a high viscosity. (McHugh 

2003; Bixler and Porse 2011). 

Commercial kappa-carrageenan is obtained predominantly by extracting the 

macroalgae Kappaphycus alvarezii in proportions that can exceed 65% by weight of dry mass 

of algae (Véliz et al. 2017), as well as Eucheuma denticulatum is the main species for the 

production of iota-carrageenan (Campo et al. 2009).  

The present study aims to understand the biomass quantification, extraction and 

quantifications of carbohydrates contents, extraction and quantification of carrageenan 

contente, and quantification of 3,6-anhydrogalactose and total sulfate from carrageenan of the 

new gametophytic strains of K. alvarezii. The hypothesis is that the light-green and yellowish-

green gametophytic strains will perform similarly to the pale-brown gametophytic strain but 

differently from the brown tetrasporophytic strain. To test this hypothesis, we evaluated 

different parameters, such as productivity, carrageenan yields (levels of 3,6-anhydrogalactose 

and sulphate in carrageenan), of different strains cultivated over a period of one year in 

Ubatuba Bay. The results were correlated with abiotic data (temperature, water transparency, 

and salinity) from the same period to evaluate seasonal variations. 

 

4.3 Materials and Methods 

Algal material and cultivation site 
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Four color strains of Kappaphycus alvarezii were studied: the brown tetrasporophyte 

(T-br; Fig. 2a), the gametophytic pale-brown “Edison de Paula” strain (E-br; Fig. 2b), and the 

gametophytic light-green (E-lg, Fig. 2c) and greenish-yellow (E-gy, Fig. 2d) “Edison de 

Paula” strains. The last two strains originated from the gametophytic pale-brown “Edison de 

Paula” strain (E-br).  

The four strains were cultivated at the Ubatuba Bay (Experimental Marine Farm of the 

Fisheries Institute), in São Paulo state, Brazil (23°27′5.8″S 45° 02′49.3″W), in a floating raft 

system (Gelli et al. 2024), which was assembled with two parallel cables, which were kept on 

the surface by floats made of 3 m-PVC tubes. The cables were separated at a distance of 2.5 

m, forming a frame, and secured at the ends by iron anchors weighing approximately 50 kg. 

Within this floating raft system, 80 plants (70-100 g fresh weight, FW) were attached (20 

plants of each strain; T-br, E-br, E-lg, and E-gy) along eight ropes, using the “tie-tie” system. 

For each rope of the floating raft, ten plants were tied at distance of 20 cm from the cable and 

27 cm between them, and the depth of approximately 50 cm from the surface. The positioning 

of the plants on the rope was determined randomly by drawing the numbers that correspond to 

each position of the floating raft (1 to 80), as shown in the schematic illustration (Fig. 4a-b). 

Branches of T-br strain (n=20) were positioned in the first 20 numbers drawn, followed by the 

E-br, E-lg e E-gy strains. This procedure was repeated in each 45 day-growth cycle, when 

seaweeds were harvested, and new plants were tied. 

Harvests occurred every 45 days, resulting in a total of 8 consecutive growth cycles 

(cycle 1: August-September/2022, cycle 2: October-November/2022, cycle 3: November-

December/2022, cycle 4: January-February/2023, cycle 5: February -March/2023, cycle 6: 

April-May/2023, cycle 7: May-June/2023, and cycle 8: July-August/2023). After 45 days, the 

seaweed was harvested, cleaned, weighed, and new seedlings were planted. At each harvest, 
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the seedlings were randomly positioned through seedling drawers and subsequently inserted 

into the floating raft (from 1 to 80), (Fig 4-2). 

Productivity based on fresh mass variation of 20 plants of each strain (n=20) were 

determined for the 4 every two growth cycles, corresponding to 3-month intervals (Cycle 1: 

August/15/2022 – September/04/2022, Cycle 2: November/17/2022 – December/03/2022, 

Cycle 3: February/16/2023 – March/04/2023, Cycle 4: May/18/2023 – June/04/2023. 

Carbohydrate concentrations, carrageenan yield, and the contents of 3,6-anhydrogalactose and 

total sulfates in the extracted carrageenan analyses were conducted in three plants of each 

strain (n=3), which were randomly selected by drawing the numbers of their positioning on 

the rope in each growth cycle. These analyses were performed in the following season and 

growth cycle: Winter: cycle 1 (August-September/2022), Spring: cycle 3 (November-

December/2022), Summer: cycle 5 (February-March/2023), and Autumn: cycle 7 (May-

June/2023). 

 

Abiotic Data 

Abiotic data were measured daily at around 9:00 a.m. from August 15th, 2022, to 

August 17th, 2023, during the working days. To standardize the number of data of each 

growth cycle, we took into consideration the shortest month, February 2023, which has the 

shortest duration. We excluded data of initial and final days of the other months until to 

obtain an equal number of collection days. Ultimately, this resulted in a total of 24 

consecutive collection days for each month. 

Water transparency was measured using a Secchi Disk, and temperature and salinity 

were measured using a thermometer of alcohol and refractometer, respectively (n = 24).  
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Biomass quantification (Productivity) 

Productivity was calculated according to the equation: Productivity = [(Bf-Bi)1/t] x 

[(Ms/Bf)/A], where: Bf = Final fresh biomass (g), Bi = Initial fresh biomass (g), t = number of 

days of cultivation, Ms = dry mass (g); A = total area (m2). Productivity results were 

expressed in g m-2 d-1 (n = 20) (Hurtado and Agbayani 2002). 

 

Determination of thallus water content 

Approximately 300 g of fresh weight (FW) of the strains (n = 3) were dried in an oven 

at a maximum temperature of 50°C until reaching constant dry weight (DW). The percentage 

of water content (WC) was determined by the equation WC = [1-(AP/AP)] x 100 (Solorzano-

Chavez et al. 2019). The results were expressed as a percentagem and used for subsequent 

calculations. 

 

Extraction and quantifications of carbohydrates contents  

Approximately 200 mg (dry weight – DW) were weighed to determine the dry matter 

mass and then subjected to carbohydrate extraction according to Carvalho et al. (1998) as 

modified. The samples were pulverized in a mortar, placed in 80% ethanol, and kept in a 

water bath at 80ºC for 1 h, then centrifuged (8000 rpm, 10 min, 4 oC). The precipitates were 

re-extracted in 80% ethanol twice. The ethanolic supernatants were pooled and reserved. The 

final residues were extracted twice in water at 60ºC for 1 h and centrifuged (1082 rpm, 15 

min, 4 oC). The quantitative analysis of total soluble sugars of the macroalgae extracts was 

performed using the phenol-sulfur colorimetric method, determined by Dubois et al. (1956) 

using glucose (SIGMA) as standard. The absorbance reading was performed in a 

spectrophotometer (490 nm). The estimated sugar levels will be through calculations based on 

the equation of the straight line that will be generated from the glucose standard curve. In this 
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analysis, (n = 4) were performed for each color strain. The results of the ethanolic and 

aqueous extracts were expressed in mg g-1 DW (n = 4). 

 

Extraction and quantification of Carrageenan content 

Approximately 0.4 g (dry weight – DW, relative humidity less than 20%) were soaked 

with 40 ml of KOH (6%) for 24 h at room temperature to obtain the “cold” alkaline 

transformation, according to Masarin et al. (2016). Then, the samples were abundantly 

washed with water, bleached in the sun for at least 6 h, and subsequently dried at a maximum 

temperature of 60 °C until their weight was constant. The material was again suspended in 80 

ml of distilled water and subsequently crushed. The crushed material was subjected to a water 

bath at 65 °C for 2 h (Masarin et al. 2016) and hot-filtered through nylon fabric. The resulting 

filtrate (carrageenan solubilized in water) was dried in an oven at a maximum temperature of 

60 °C, according to the method described by Hayashi et al. (2007a). Carrageenan 

quantification results were expressed as % DW (n = 3). 

 

Quantification of 3,6-anhydrogalactose from carrageenan 

Approximately 10 mg of dry carrageenan (n = 3) were dissolved in 40 mL of distilled 

water in a water bath (85ºC) until complete dissolution (90 to 120 min). The samples will be 

cooled in an ice-water bath and the volume will be completed to 50 mL with distilled water 

(stock solution). In a test tube, 400 µL of the stock solution 400 µL of distilled water, 100 µL 

of 5% thymol, and 1 mL of 0.5% ferric chloride will be added. The samples will be 

homogenized, heated in a water bath for 13 min at 80ºC, and cooled in an ice-water bath. 

Then, 2 mL of 98% ethanol will be added. After these procedures, the samples will be 

analyzed in a spectrophotometer (635 nm). Their absorbances were recorded to calculate the 
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amount of 3,6-anhydrogalactose (%), using the calibration curve, through the use of a fructose 

standard (Sigma) (12-120 µg), according to the methodology described by Matsuhiro (1995) 

and Saito (1997). 

 

Quantification of total sulfate from carrageenan  

Approximately 35 mg of dry carrageenan (n = 3) were moistened in 100 µL of 95% 

ethanol, followed by the addition of 500 µL of 0.5 N HCl. The samples will be hydrolyzed in 

boiling water for 2 h. The volume will be completed to 10 mL with distilled water. The 

samples will be centrifuged at 12,000 rpm for 15 min at room temperature, discarding the 

precipitate and storing the supernatant (stock solution). In a test tube, 1 mL of the stock 

solution, 1 mL of distilled water, and 200 µL of 0.5 N HCl will be added, followed by gentle 

shaking. Then, 100 µL of the barium chloride-gelatin solution will be added. The samples will 

be shaken again, keeping them at room temperature for 30 min. After this period, the samples 

will be analyzed in a spectrophotometer (550 nm) and their absorbances recorded to calculate 

the amount of sulfate (%) using a calibration curve, through an anhydrous sodium sulfate 

standard, according to Saito (1997). 

 

Statistical analysis 

The assumptions of normality and homogeneity of variances were tested using the 

Sharipo-Wilk and Levene tests, respectively. Total soluble carbohydrates and carrageenan 

yields, sulfates, 3-6-anhydrogalactose content and were analyzed by ANOVA (two-way) 

(independent variables: Strains and Seasons). In all cases, the Tukey a posteriori test was used 

to establish statistical differences between treatments. Pearson's correlation analysis was 

performed by correlating abiotic data (temperature, seawater transparency and salinity) with 
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all measured parameters. Statistical analyses were performed using the Past 4.03 program 

(Oyvind Hammer), considering p < 0.05. 

 

4.4 Results  

Abiotic Data 

Our study revealed significant differences in the climate between the different seasons 

throughout the study period, (Table 4-1). The highest temperature means were recorded 

during the summer (25.7 ± 0.9 oC). These results were accompanied by the highest average 

seawater transparency of 298 ± 53 cm (cycle 3). During winter (cycle 1), seawater temperatures 

were lower (19.9 ± 0.8 oC) and the lowest seawater transparencies were also measured (144.2 ± 58.4 

cm).   Furthermore, autumn (cycle 4) recorded the highest average salinities (36.0 ± 1.6). 

 

Productivity 

The productivity varied among different strains and seasons (Table 4-3). When 

comparing the produtictivity of different strains in each season, tetrasporophytic strain (T-br) 

displayed higher growth rates than the gametophytic strains. Overall, all strains presented 

higher productivity in the summer, and lower productivity at the winter, and Autumn, (Fig 4-

4). Comparing each strains throughout the seasons, T-br showed the highest productivity in 

the spring and summer (276.0 ± 47.3 –  372.4 ± 126.0 g m−2 d−1) compared to the winter and 

autumn (112.2 ± 27.4 – 155.0 ± 42.9 g m−2 d−1); E-br showed the highest productivity in the 

spring, summer, and autumn (75.0 ± 21.4 – 156.5 ± 47.0 g m−2 d−1) compared to the winter 

(38.2 ± 9.5 g m−2 d−1); E-lg showed the highest productivity in the summer (117.2 ± 52.4 g 

m−2 d−1) compared to the winter (32.4 ± 6.3 g m−2 d−1); E-gy showed the highest productivity 

in the spring and summer (97.6 ± 21.4 – 124.5 ± 39.3 g m−2 d−1) compared to the winter (43.6 

± 12.0 g m−2 d−1), (Fig 4-4). 
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Determination of thallus water content 

The results showed similarities among strains and growth cycles (Table 4-2), and the 

results were used to determine total soluble carbohydrate concentrations and carrageenan 

yield. 

 

Total carbohydrate content 

Total soluble carbohydrate contents showed differences between the strains and 

interactions (Table 4-3). Tetrasporophyte (T-br) and gametophyte (E-gy) presented higher 

total soluble carbohydrate contents at the spring. On winter, they gametophytes presented 

higher total soluble carbohydrate contents than autumn. Comparing the total soluble 

carbohydrate contents in each strain throughout the season (Fig. 4-5), T-br presented contents 

between  spring (251.0 ± 41.0 mg g-1 DW) and summer (131.0 ± 4.8 mg g-1 DW); E-br 

presented contents between winter (209.0 ± 35.6 mg g-1 DM) and summer (131.3 ± 37.0 mg g-

1 DW); E-lg presented contents between winter (200.0 ± 7.0 mg g-1 DW) and summer (108.4 

± 18.5 mg g-1 DW); E-gy presented levels between spring (232.7 ± 89.8 mg g-1 DW) and 

autumn (124.6 ± 12.4 mg g-1 DW), (Fig 4-5). 

  

Carbohydrates – Ethanolic extraction 

The results showed significant differences between strains and interactions (Table 4-3). 

The gametophyte (E-lg) strain showed higher levels compared to all gametophytes in winter 

and lower in spring, (Fig 4-6a). Comparing the levels of alcohol-soluble carbohydrates in 

each strain throughout the season, T-br showed levels between spring (26.5 ± 5.5 mg g-1 DW ) 

and summer (25.1 ± 2.4 mg g-1 DW); E-br showed levels between winter (54.2 ± 10.1 mg g-1 

DW) and autumn (15.6 ± 3.2 mg g-1 DW); E-lg presented contents between winter (54.3 ± 
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10.1 mg g-1 DW) and spring (4.9 ± 6.4 mg g-1 DW); E-gy presented contents between winter 

(50.3 ± 12.9 mg g-1 DW) and autumn (7.7 ± 2.8 mg g-1 DW), (Fig 4-6a). 

 

Carbohydrates – Aqueous extraction  

The results showed significant differences between strains and interactions (Table 4-3). 

The tetrasporophyte (T-br) strain in spring showed the highest levels of carbohydrates soluble 

in water and the gametophyte E-gy strain the lowest levels in summer (Fig 4-6). Comparing 

the carbohydrate levels throughout the seasons, T-br showed levels between spring (226.5 ± 

43.4 mg g-1 DW) and summer (105.9 ± 7.1 mg g-1 DW); E-br presented contents between 

winter (177.6 ± 30.4 mg g-1 DW) and summer (109.3 ± 28.2 mg g-1 DW); E-lg presented 

contents between summer (147.9 ± 23.3 mg g-1 DW) and winter (100.9 ± 18.0 mg g-1 DW ); 

E-gy presented contents between spring (189.2 ± 80.7 mg g-1 DW) and summer (104.1 ± 8.2 

mg g-1 DW), (Fig 4-6b). 

 

Extraction and quantification of Carrageenan content 

The carrageenan contents varied across seasons (Tab 4-3). All strains showed higher 

carrageenan in the winter, (Fig 4-7). Comparing average carrageenan contents of the strains 

throughout the seasons: Winter (41.6 ± 4.8 % DW), Spring (30.4 ± 3.8 % DW), Summer (32.4 

± 5.0 % DW), and Autumn (30.6 ± 6.8 % DW), (Fig 4-7). 

 

3,6-anidrogalactose of carrageenan quantification 

The 3,6-anhydrogalactose levels showed similarities between the strains and seasons 

(Table 4-3), and the average 3,6-anhydrogalactose was 42.7 ± 3.7% of carrageenan. 

 

Total sulfates of carrageenan quantification 
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The total sultates contents varied across only different seasons (Tab 4-3). After 

comparing the value of total sulfates contents in different growth cycles, the summer and 

autumn, had a lowers total sulfates compared to the spring (Table 4-1; Fig 4-8). Comparing 

total sulfates contents throughout the seasons, the average results of the strains were: winter 

(26.9 ± 5.4 %), spring (29.8 ± 2.6 %), summer (22.7 ± 7.1 %), and autumn (24.4 ± 5.8 %), (Fig 

4-8). 

 

Pearson correlation 

The following correlations were observed among various factors: Abiotic data 

indicated a positive correlation between temperature and water transparency, as well as with 

productivity. Total Carbohydrates were negatively correlated with salinity. carrageenan 

content showed negative correlations with both temperature and water transparency. 

 

4.5 Discussion  

Our data corroborate the hypothesis that the new light-green and yellow-green color 

variants are similar to the pale-brown strain of the “Edison de Paula” gametophytes in the 

evaluated characteristics, demonstrating similarity in their productivity, total carbohydrate, 

carrageenan and 3,6-anhydrogalactose and sulfate contents of the carrageenan. 

The results supported the hypothesis that diploid organisms are more productive and 

that seasonality in seawater temperature during winter (19.9 ± 0.8 oC) and summer (25.7 ± 0.9 

oC) correlated with productivity and carrageenan contents. 

Seasonality responses were shaped by multiple interacting factors, both exogenous and 

endogenous (Pereira and Gomes 2009). Seasonal temperature variations in the study had a 

direct influence on productivity, increasing in the summer, as well as the carrageenan yield 
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was inversely correlated to productivity, in addition to the higher carrageenan sulfate contents 

in the spring. 

Terada et al. (2015) reported that seawater temperature during the cultivation of K. 

alvarezii was lower than the ideal range. Additionally, epiphytes is presence in seaweed 

production is common and can diminish productivity (Hurtado et al. 2007; Mulyaningrum et 

al. 2019). Few studies in the same cultivation site relate to productivity. Productivity gains 

when applying a density of 6.7 plants m⁻² in the studied strains in the same cultivation site 

showed results of 46 to 181 g m⁻² d⁻¹ for T-br and 20 to 71 g m⁻² d⁻¹ for E-br (Solorzano-

Chávez et al. 2019). This highlights the consistency of our results when considering the 

density factor applied in our study. 

Abiotic factors such as water temperature and salinity, luminosity, water movement, 

and nutrients also impact the biochemical contents of polysaccharides (Tanniou et al., 2015; 

Stiger-Poureau et al. 2016) and influence the development of K. alvarezii (Rupert et al. 2022) 

with temperature appearing to be the most critical factor for carrageenan production (Glenn 

and Doty 1992; Heriyanto et al. 2018) until reaching the ideal temperature between 28 – 31 

oC (Orbita 2013), at which point the production rate drops rapidly (Bulboa et al. 2008, Kumar 

et al. 2020). Studies establish carbohydrate contents around 66% for K. alvarezii in the 

Philippines (Meinita et al. 2012; Abd-Rahim et al. 2014), in addition to seasonal variations in 

the same cultivation site from 122.92 ± 15.11 mg g⁻¹ DW (Summer 2017) to 231.79 ± 16.86 

mg g⁻¹ DW (Winter, 2017) (Araújo et al., 2023). 

Our results demonstrate seasonality in total soluble carbohydrates in summer and/or 

spring from 251.0 ± 41.0 mg g⁻¹ DW to 131.0 ± 4.8 mg g⁻¹ DW for T-br and from 209.0 ± 

35.6 mg g⁻¹ DW to 131.3 ± 37.0 mg g⁻¹ DW for E-br. Other methodologies, however, 

identified contents of 53.4 g 100 g⁻¹ (T-br) and 51.6 g 100 g⁻¹ (E-br) (Masarin et al. 2016), in 
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addition to 21.1 g 100 g⁻¹ (T-br) (Solorzano-Chavez et al. 2019), also in the same cultivation 

site. Algae synthesize low molecular weight carbohydrates and polysaccharides to maintain 

cellular osmotic pressure (Karsten et al. 1999). Kappaphycus alvarezii strains show greater 

sensitivity to salinity variations and the study indicates that temperature increases and 

decreases in salinity can negatively impact polysaccharide contents. 

Our study demonstrated that seasonality patterns were related to carrageenan yield, in 

agreement with other studies carried out with K. alvarezii (Othno et al. 1994; Hayashi et al. 

2007a). 

The seasonality patterns showed a relationship with the carrageenan yields, which 

reached higher values at the end of winter of 41.6 ± 4.8% although lower when compared 

with other studies, carried out in the same cultivation site, of 64.5 ± 1.2 % DW (Roldán et al. 

2017), 63.5 ± 6.0 % DW (Masarin et al. 2016) and 73.3 ± 1.0 % DW (Solorzano-Chavez et al. 

2019). 

The differences can be attributed to the extraction methodology used in each study, 

and comparisons are difficult, because they vary depending on the extraction method, strain, 

and/or raw material extracted (Hayashi et al. 2007), as well as anthropogenic environmental 

changes over the 29 years of studies in the same cultivation site. 

Carrageenan sulfate levels also showed seasonal variations (29.8 % – 22.7 %), similar 

to those observed by Hayashi et al. (2007) (T-br: 32.8 – 27.2 %; E-br: 30.1 – 27.9 %). 

The levels of 3,6-anhydrogalactose in carrageenans were consistent across all strains, 

measured at 42.7 ± 3.7%. This finding contrasts with the research conducted by Hayashi et al. 

(2007), which reported varying levels between tetrasporophytes and gametophytes from the 

same cultivation site. In their study, they noted values of 8.7 – 7.5 % for T-br and 30.6 – 26.1 

% for E-br over 30-day growth cycles. 
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Presenting results inferior to those of the present study, Solorzano-Chaves et al. 

(2019), when investigating tetrasporophytes in the same cultivation site, highlighted that 

alkaline extraction increased sulfate levels (for example, from 12.1 ± 0.8% to 16.1 ± 1.1% in 

cold extraction), reaching 21.9 ± 1.2% in the residue. The study also highlighted the influence 

of the methodology applied in carbohydrate quantification. 

In conclusion, the data obtained in this study confirm the initial hypotheses about the 

similarity between the new light green and yellow-green color variants and the light brown 

lineage of the “Edison de Paula” gametophytes in terms of productivity, total carbohydrates, 

carrageenan, 3,6-anhydrogalactose, and carrageenan sulfate contents. Multiple interactive 

factors, exogenous and endogenous, attributed the seasonality patterns, which had a direct 

impact on productivity, which was higher in summer, and on carrageenan contents, which 

presented the highest values at the end of winter. 

This study reinforces the importance of ploidy in determining the physiological 

responses of Kappaphycus alvarezii strains, showing that diploid strain are more productive 

and that environmental conditions significantly influence the seasonal productivity patterns 

and biochemical contents. These results contribute to understanding the interactions between 

genetic and environmental factors in macroalgae cultivation and highlight the relevance of 

adequate management to optimize the production of this species. 
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Table 4-1: Means of abiotic data (temperature; salinity; water transparency) (n = 24) over 4 

growth cycles (cycle 1, Winter: August/15/2022 – September/04/2022, cycle 2, Spring: 

November/17/2022 – December/03/2022, cycle 3, Summer: February/16/2023 – 

March/04/2023, and cycle 4, Autumn: May/18/2023 – June/04/2023, (one-way ANOVA, 

Tukey: p-value < 0.05). SD standard deviation of the means, F statistical analysis of variance 

(ANOVA) of the ratio between the variation between the groups and the variation within the 

groups, and p statistically significant difference between groups, at the 5% significance level. 

Paratemeters 
Growth 

cycles 
Min Max Mean SD F p  

Temperature 1 18.0 21.0 19.9 0.8 168.9 0.0000 

(oC) 2 21.0 26.0 23.8 1.3     

  3 24.0 27.0 25.7 0.9     

  4 20.0 22.5 21.5 0.7     

Salinity 1 30.0 37.0 34.2 2.1 10.3 0.0000 

  2 21.0 35.0 31.3 4.2     

  3 26.0 36.0 34.2 2.1     

  4 32.0 37.0 36.0 1.6     

Water Transparency 1 40 290 144 58 15.6 0.0000 

(cm) 2 70 400 225 101     

  3 170 30 298 53     

  4 100 360 209 74     

bold, significant correlation (p < 0.05). 

 

 

 



124 
 

Table 4-2: Average water content in the thallus of Kappaphycus alvarezii strains Brown 

tetrasporophyte (T-br); Pale-brown Edison de Paula (E-br); Light-green Edison de Paula (E-

lg); Greenish-yellow Edison de Paula (E-gy). Winter (cycle 1: August-September/2022), 

Spring (cycle 2: November-December/2022), Summer (cycle 3: February-March/2023), and 

Autumn (cycle 4: May-June/2023), (n = 3; Growth cycles = 45 days). Standard deviation of 

the means (SD). 

Growth cycles 

(Season) 
T-br E-br E-lg E-gy 

1 (Winter) 92.17 % 90.12 % 90.47 % 91.57 % 

2 (Spring) 91.70 % 89.37 % 90.60 % 91.64 % 

3 (Summer) 92.86 % 91.89 % 92.24 % 92.26 % 

4 (Autumn) 91.91 % 91.67 % 91.36 % 92.26 % 

Average (SD) 91.70 ± 0.33 % 89.74 ± 0.53 % 90.53 ± 0.09 % 91.60 ± 0.05 % 

 

 

 

 

 

 

 

 

 

 



125 
 

Table 4-3: Analyzed by two-way ANOVA to examine the influence of independent variables 

(Temperature; Salinity; Water transparency; Carbohydrates, Carrageenan, 3,6 anidrogalactose; 

Total Sulfates) on the dependent variables strains, Brown tetrasporophyte (T-br), Pale-brown 

Edison de Paula (E-br), Light-green Edison de Paula (E-lg), Greenish-yellow Edison de Paula 

(E-gy).  Growth cycles (cycle 1: August-September/2022, cycle 2: November-

December/2022, cycle 3: February-March/2023, cycle 4: May-June/2023 of K. alvarezii 

cultivated in Ubatuba Bay. 

Parameters Source of variatin df F p 

Productivity Period 3 75.9 0.0000 

  Strain 3 140.1 0.0000 

  Interaction 9 12.1 0.0000 

Total carbohydrates Period 3 31.6 0.0000 

  Strain 3 1.0 0.3796 

  Interaction 9 3.0 0.0071 

Carbohydrates (Meth. extr.) Period 3 28.5 0.0000 

  Strain 3 1.6 0.0379 

  Interaction 9 8.3 0.0000 

Carbohydrates (Water extr.) Period 3 30.1 0.0000 

  Strain 3 1.9 0.6299 

  Interaction 9 2.1 0.0216 

% Carrageenan Period 3 13.4 0.0000 

  Strain 3 1.6 0.2024 

  Interaction 9 1.3 0.2948 

3,6 anidrogalactose  Period 3 2.7 0.0649 

  Strain 3 0.9 0.4332 

  Interaction 9 0.5 0.8577 

Total sulfates  Period 3 5.1 0.0056 

  Strain 3 0.8 0.4947 

  Interaction 9 2.7 0.0196 

 bold, significant correlation (p < 0.05). 
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Table 4-4: Pearson correlation analysis of the parameters (Temperature, Salinity, Water 

Transparency, Productivity, Total Carbohydrates, and Carrageenan). Brown tetrasporophyte 

(T-br); Pale-brown Edison de Paula (E-br); Light-green Edison de Paula (E-lg); Greenish-

yellow Edison de Paula (E-gy). Growth cycles (cycle 1: August-September/2022, cycle 2: 

November-December/2022, cycle 3: February-March/2023, cycle 4: May-June/2023 of K. 

alvarezii cultivated in Ubatuba Bay. 

Parameters Salinity Transparency Productivity Carbohydrates Carrageenan 

Temperature -0.25 (0.354) 0.96 (0.0000) 0.55 (0.0283) -0.24 (0.3618) -0.65 (0.0065) 

Salinity  0.02 (0.9499) -0.15 (0.5876) -0.67 (0.0047) -0.02 (0.9429) 

Transparency   0.53 (0.0369) -0.44 (0.0862) -0.72 (0.0018) 

Productivity    0.00 (0.9797) -0.33 (0.2173) 

Carbohydrates     0.36 (0.1681) 

 bold, significant correlation (p < 0.05). 
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Figure 4-1: Macroscopic morphology of four color strains of Kappaphycus alvarezii 

cultivated in the Experimental Marine Farm of the Fisheries Institute, Ubatuba bay, 

southeastern Brazil. (a) Brown tetrasporophyte; (b) Pale-brown Edison de Paula gametophyte; 

(c) Light-green Edison de Paula gametophyte; (d) Greenish-yellow Edison de Paula 

gametophyte. Scale bar = 5 cm. 
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Figure 4-2: General aspect of cultivation site with a floating raft system, and experimental 

design of distribution of Kappaphycus alvarezii strains Tetrasporophyte brown (T-br); Edison 

de Paula light brown gametophyte (E-br); Edison de Paula light green gametophyte (E-lg); 

Edison de Paula yellow-green gametophyte (E-gy), (n = 20). 
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Figure 4-3: Variation of Temperature (a), Water Transparency (b), and Salinity (c) at the 

Kappaphycus alvarezii cultivation site in Ubatuba Bay. Data represent means ± standard 

deviation (n = 24) recorded over 45 days during the four climatic seasons throughout the year. 

1 (Winter): August-September/2022, 2 (Spring): November-December/2022, 3 (Summer): 

February-March/2023, and 4 (Autumn): May-June/2023. Different letters represent significant 

differences among growth cycles or months (one-way ANOVA, Tukey´s multiple comparison 

test, p < 0.05). 
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Figure 4-4: Productivity of Kappaphycus alvarezii color strains cultivated in Ubatuba bay, 

from August/2022 to August/2023, comprising four 45-day growth cycles interspersed with 

sample collections every two cycles (Mean ± SD, n = 20). Brown tetrasporophyte (T-br); 

Pale-brown Edison de Paula gametophyte (E-br); Light-green Edison de Paula gametophyte 

(E-lg); Greenish-yellow Edison de Paula gametophyte (E-gy). Growth cycle 1: August-

September/2022 (Winter), cycle 2: November-December/2022 (Spring), cycle 3: February-

March/2023 (Summer), cycle 4: May-June/2023 (Autumn). Bars, standard deviation of the 

means (SD). Different letters represent significant differences among seasons (Two-way 

ANOVA, Tukey´s multiple comparison test, p < 0.05). 
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Figure 4-5: Soluble carbohydrate contents (mean ± SD, n=4) of Kappaphycus alvarezii strains 

cultivated in Ubatuba bay for 45 day-growth cycle in each season. Brown tetrasporophyte (T-

br); Pale-brown Edison de Paula gametophyte (E-br); Light-green Edison de Paula 

gametophyte (E-lg); Greenish-yellow Edison de Paula gametophyte (E-gy). 1 (Winter): 

August-September/2022, 2 (Spring): November-December/2022, 3 (Summer): February-

March/2023, 4 (Autumn): May-June/2023. Bars, standard deviation of the means (SD). 

Different letters represent significant differences among seasons (Two-way ANOVA, Tukey´s 

multiple comparison test, p < 0.05). 
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Figure 4-6: Soluble carbohydrate contents (mean ± SD, n=4) of Kappaphycus alvarezii strains 

cultivated in Ubatuba bay for 45 day-growth cycle in each season. a ethanolic extraction, b 

aqueous extraction. Brown tetrasporophyte (T-br); Pale-brown Edison de Paula gametophyte 

(E-br); Light-green Edison de Paula gametophyte (E-lg); Greenish-yellow Edison de Paula 

gametophyte (E-gy). 1 (Winter): August-September/2022, 2 (Spring): November-

December/2022, 3 (Summer): February-March/2023, 4 (Autumn): May-June/2023. Bars, 

standard deviation of the means (SD). Different letters represent significant differences among 

seasons (Two-way ANOVA, Tukey´s multiple comparison test, p < 0.05). 
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Figure 4-7: Carrageenan contents (mean ± SD, n=3) of Kappaphycus alvarezii strains 

cultivated in Ubatuba bay for 45 day-growth cycle in each season. The blue columns represent 

the averages of the four strains together since there were no significant differences among 

them. Brown tetrasporophyte (T-br); Pale-brown Edison de Paula gametophyte (E-br); Light-

green Edison de Paula gametophyte (E-lg); Greenish-yellow Edison de Paula gametophyte 

(E-gy). Winter (August-September/2022), Spring (November-December/2022), Summer 

(February-March/2023), Autumn (May-June/2023). Bars, standard deviation of the means 

(SD). Different letters represent significant differences among seasons (Two-way ANOVA, 

Tukey´s multiple comparison test, p < 0.05). 
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Figure 4-8: Total Sulfates contents (mean ± SD, n=4) of Kappaphycus alvarezii strains 

cultivated in Ubatuba bay for 45 day-growth cycle in each season. The blue columns represent 

the averages of the four strains together since there were no significant differences among 

them. Brown tetrasporophyte (T-br); Pale-brown Edison de Paula gametophyte (E-br); Light-

green Edison de Paula gametophyte (E-lg); Greenish-yellow Edison de Paula gametophyte 

(E-gy). Winter (August-September/2022), Spring (November-December/2022), Summer 

(February-March/2023), Autumn (May-June/2023). Bars, standard deviation of the means 

(SD). Different letters represent significant differences among seasons (Two-way ANOVA, 

Tukey´s multiple comparison test, p < 0.05). 
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5. Conclusões e considerações finais 

Com base nos resultados apresentados, é possível identificar as linhagens de 

Kappaphycus alvarezii com desempenho superior e maior potencial biotecnológico para 

cultivos comerciais, considerando os parâmetros de crescimento, eficiência fotossintética e 

composição bioquímica: 

 

1. O "efeito de borda" no sistema de cultivo de Kappaphycus alvarezii foi identificado 

como um fator que influenciou negativamente as taxas de crescimento no delineamento 

experimental inicial; 

 

2. Linhagem tetrasporofítica marrom como destaque principal: Esta linhagem apresentou 

as maiores taxas de crescimento e produtividade, especialmente no verão, período em 

que há maior incidência de luz e temperatura mais elevada. Esse desempenho pode estar 

relacionado à sua maior concentração de ficobiliproteínas, importantes pigmentos 

envolvidos na fotossíntese e no aproveitamento da luz. Essa característica confere à 

linhagem tetrasporofítica maior resiliência fisiológica e potencial produtivo, tornando-

a altamente promissora para cultivos comerciais em larga escala, principalmente na 

região de Ubatuba; 

 

3. Linhagem gametofítica verde-amarelo (E-gy): Apesar de não apresentar os maiores 

índices de crescimento, a E-gy demonstrou maior eficiência fotossintetizante entre as 

gametofíticas, sugerindo um bom desempenho metabólico sob condições ambientais 

favoráveis. Essa linhagem pode ser vantajosa em sistemas de cultivo que priorizam 
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eficiência energética e estabilidade fisiológica, mesmo que sua taxa de crescimento 

absoluta seja inferior à tetrasporofítica; 

 

4. Linhagens gametofíticas verde-claro (E-lg) e marrom-claro (E-br): A linhagem E-lg 

apresentou menores concentrações de ficoeritrina e taxas de crescimento reduzidas sob 

altas temperaturas, indicando baixa adaptação a condições estivais. Já a E-br, embora 

mais próxima das outras em termos de pigmentação, não se destacou significativamente 

nos parâmetros avaliados. Essas linhagens, portanto, apresentam menor potencial 

biotecnológico imediato, especialmente para regiões de cultivo com alta temperatura 

média; 

 

5. Considerações bioquímicas complementares: A queda nas concentrações de proteínas 

solúveis no verão e o aumento de carotenoides com função fotoprotetora demonstram a 

importância da resiliência metabólica sob estresse térmico, característica mais 

evidenciada na linhagem tetrasporofítica. Além disso, embora os teores de carragenana 

e sulfatos não tenham variado entre as linhagens, a estabilidade sazonal desses 

compostos reforça a viabilidade do cultivo comercial; 

 

Conclusão: 

A linhagem tetrasporofítica marrom é a que reúne maior desempenho na produção de biomassa, 

com potencial superior para cultivos comerciais, especialmente na região de Ubatuba e durante o verão. 

A linhagem gametofítica E-gy representa uma alternativa complementar, com destaque para sua 

eficiência fotossintética, sendo útil em condições controladas ou como parte de estratégias de cultivo 

misto. 
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Diante do exposto, algumas questões ainda permanecem em aberto e poderiam ser 

aprofundadas. Este estudo suscitou reflexões sobre o comportamento fisiológico de 

Kappaphycus alvarezii frente às variações cromáticas das diferentes linhagens analisadas, bem 

como sobre seus parâmetros fotossintetizantes ao longo das oscilações ocorridas no ciclo diário. 


