
Proposta de Criação

- Área de Proteção Ambiental Barreiro Rico
 Área de Proteção Ambiental Tanquã-Rio Piracicaba
 - Relatório Técnico São Paulo, julho de 2018

Créditos Técnicos

Coordenação Geral

Rodrigo Antonio Braga Moraes Victor (Fundação Florestal)

Introdução

Rodrigo Antonio Braga Moraes Victor (Fundação Florestal)

Uso e Ocupação da Terra

Mônica Pavão (Instituto Florestal) Dimas Antônio da Silva (Instituto Florestal) Ciro Koiti Matsukuma (Instituto Florestal)

Vegetação

Frederico Alexandre Roccia Dal Pozzo Arzolla (Instituto Florestal)
Cintia Kameyama (Instituto de Botânica)
Mônica Pavão (Instituto Florestal)
Natália Macedo Ivanauskas (Instituto Florestal)
Marina Mitsue Kanashiro (Instituto Florestal)
Claudio de Moura (Instituto Florestal)

Fauna

Alexsander Zamorano Antunes (Instituto Florestal) Cybele de Oliveira Araujo (Instituto Florestal) Marina Mitsue Kanashiro (Instituto Florestal)

Hidrologia Superficial

Maurício Ranzini (Instituto Florestal) Francisco Carlos Soriano Arcova (Instituto Florestal) Fábio Netto Moreno (CETESB) Nelson Menegon Júnior (CETESB)

Geomorfologia, Perigo, Vulnerabilidade, Riscos

Sílvio Takashi Hiruma (Instituto Geológico) Viviane Dias Alves Portela (Instituto Geológico) Cláudio José Ferreira (Instituto Geológico) Denise Rossini-Penteado (Instituto Geológico)

Solos e Fragilidade Ambiental

Marcio Rossi (Instituto Florestal) Marina Mitsue Kanashiro (Instituto Florestal) Victor Kenzo Hirokado (Instituto Florestal)

Socioeconomia

Marco Antonio Gomes (Coordenadoria de Planejamento Ambiental)
Priscila Ferreira Capuano (Coordenadoria de Planejamento Ambiental)
Tatiana Camolez Morales Ferreira (Coordenadoria de Planejamento Ambiental)

Conclusões

Rodrigo Antonio Braga Moraes Victor (Fundação Florestal) Lucila Manzatti (Fundação Florestal)

Geoprocessamento

Brayan Bergamasco Sberse (Fundação Florestal)
Juliana Amorim da Costa Matsuzaki (Coordenadoria de Planejamento Ambiental)
Marina Mitsue Kanashiro (Instituto Florestal)
Vivian Tiemi Sugano (Fundação Florestal)
Antonio Alvaro Buso Júnior (Fundação Florestal)

Edição e Consolidação do Relatório

Rodrigo Antonio Braga Moraes Victor (Fundação Florestal) Edgar Fernando de Luca (Instituto Florestal) Elaine Aparecida Rodrigues (Instituto Florestal)

Comunicação e Mobilização

Rodrigo Antonio Braga Moraes Victor (Fundação Florestal) Lucila Manzatti (Fundação Florestal) Carlos Eduardo Beduschi (Fundação Florestal) Edgar Fernando de Luca (Instituto Florestal) Luiz Sertório Teixeira (Fundação Florestal)

Fotos da Capa

Adriana Mattoso Rodrigo Antonio Braga Moraes Victor (Fundação Florestal)

SUMÁRIO

SUMÁRIO	3
LISTA DE FIGURAS	6
LISTA DE TABELAS	. 10
1. INTRODUÇÃO	. 12
1.1 Apresentação da proposta	. 12
1.2.1 Estabelecimento dos perímetros de estudos inicial e refinamento para a proposta final	
1.3 O Processo de criação da unidade de conservação	. 17
1.4 Comunicação e mobilização para a proposta	. 18
2. USO E OCUPAÇÃO DA TERRA DA ÁREA	. 20
2.1. INTRODUÇÃO	. 20
2.2. MATERIAL E MÉTODOS	. 21
2.2.1. Localização da área de estudo	. 21
2.2. Materiais utilizados	. 22
2.3. Procedimentos metodológicos	. 23
2.3. RESULTADOS E DISCUSSÃO	. 29
2.4. CONSIDERAÇÕES FINAIS	. 40
3. VEGETAÇÃO	. 42
3.1 Introdução	. 42
3.2. Método	. 42
3.2.1. Mapeamento da vegetação	. 42
3.2.2. Lista de espécies	. 43
3.2.3. Tipos vegetacionais	. 43
Floresta Estacional Semidecidual (F)	. 46
Floresta Estacional Decidual (C)	. 49
Vegetação secundária (Vs)	. 51
Floresta aluvial (Fa)	. 52
Encrave de Savana (SNc)	. 53
Ecótono Savana / Floresta Estacional (SN)	. 55
Formação Pioneira com Influência Fluvial (Pa)	. 55

Área a	ıntrópica (AA)	58
3.3.	Estudos sobre vegetação na área de estudo	58
3.4.	Composição florística	59
Espéci	ies Ameaçadas da Flora/ Endêmicas	72
Espéci	ies exóticas/ invasoras/ com potencial de invasão	73
3.5.	Principais vetores de pressão	74
3.6.	Justificativas para a criação de Unidade de Conservação	75
4. F	AUNA	76
4.1.	Introdução	76
4.2.	Área de Estudo e Metodologia	76
4.3.	Diagnóstico e Análise	82
4.3.1.	Mamíferos	82
4.3.2.	Aves	87
4.3.3.	Anfíbios e Répteis	94
4.3.4.	Peixes	98
4.4.4.	Ameaças	101
4.4.4.	1. Ecossistemas florestais	101
4.4.4.2	2. Ecossistemas aquáticos	103
4.4.5.	Conclusões	106
Anexo	VI. Algumas aves encontradas na área de estudo	140
5. H	IIDROLOGIA SUPERFICIAL	150
5.1.	METODOLOGIA UTILIZADA	150
5.2.	CARACTERIZAÇÃO DA REGIÃO ESTUDADA	151
5.3.	Diagnóstico da ÁREA PROPOSTA	153
5.3.1.	Balanço Hídrico	153
5.3.2.	Hidrografia	156
5.3.3.	Qualidade da Água	158
5.4.	CONSIDERAÇÕES GERAIS	162
6. G	SEOMORFOLOGIA, PERIGO, VULNERABILIDADE, RISCOS	164
6.1.	GEOMORFOLOGIA	164

	Considerações inicias sobre a compartimentação geomorfológica regional utilizada r nte trabalho	
6.1.2.	Síntese do contexto geomorfológico da região do Barreiro Rico-Tanquã	. 166
6.2.	Perigos, Vulnerabilidade, Riscos	. 172
6.2.1.	Caracterização do meio físico	. 173
6.2.2.	Perigos, Vulnerabilidade e Riscos	. 175
6.3.	Conclusões	. 178
7. S	OLOS E FRAGILIDADE AMBIENTAL	. 180
7.1.	Introdução	. 180
7.2.	Material e Métodos	. 181
7.3.	Resultados	. 182
7.3.1.	Solos	. 182
7.3.2.	Declive	. 194
7.3.3.	Erosão	. 196
7.3.4.	Fragilidade	. 199
7.4.	Considerações finais	. 204
8. S	OCIOECONOMIA	. 205
8.1	Introdução	. 205
8.2	Procedimentos Metodológicos	. 205
8.2.1	Caracterização socioeconômica	. 206
CONC	LUSÕES	. 212
9.1 propo	O Sistema Nacional de Unidades de Conservação - SNUC - e o enquadramento da sta	. 212
9.2	A divisão do território para a sua gestão mais adequada	. 215
9.3	Diretrizes iniciais de gestão	. 218
9.3.1.	Diretrizes Gerais para as APAs Bareiro Rico e Tanquã-Rio Piracicaba	. 218
9.3.2.	Diretrizes para a APA Tanquã-Rio Piracicaba	. 219
9.3.3.	Diretrizes para a APA Barreiro Rico	. 220

LISTA DE FIGURAS

Figura 1.1. Perímetro inicialmente estabelecido para área de estudo de criação de unidade de conservação (municípios abrangidos)15
Figura 1.2. Perímetro inicialmente estabelecido para área de estudo de criação de unidade de conservação, sobre imagem de satélite15
Figura 1.3. Perímetro proposto para a criação de unidade de conservação (aproximadamente 44.000 ha) em comparação à área original de estudos16
Figura 2.1. Localização da área de estudo "Barreiro Rico - Tanquã"22
Figura 2.2. Articulação de imagens de satélite da área de estudo "Barreiro Rico - Tanquã" 23
Figura 3.3. Pontos visitados e trajeto percorrido no trabalho de campo28
Figura 2.4. Mapa de uso e ocupação da terra da área de estudo "Barreiro Rico - Tanquã 30
Tabela 2.1. Categorias de uso da terra e vegetação natural da área "Barreiro Rico-Tanquã"31
Figura 2.1. Distribuição das categorias de uso da terra e vegetação natural da área de estudo "Barreiro Rico - Tanquã"
Foto 2.2. Extensas áreas de pastagem próximo à Estação Ecológica Barreiro Rico33
Foto 2.3. Cultivo de cana-de-açúcar34
Foto 2.4. Em primeiro plano área de solo exposto para plantio agrícola após colheita de cana- de-açúcar34
Figura 2.5. Distribuição da cobertura vegetal natural na área de estudo Barreiro Rico - Tanquã
Foto 2.4. Floresta Estacional Semidecidual em fundo de vale
Foto 2.5. Planície Aluvial do Rio Piracicaba com Formação Pioneira de influência fluvial 37
Foto 2.6. Ao fundo, fragmento de vegetação secundária com intensas alterações provocadas por incêndios florestais
Foto 2.7. Floresta Estacional Decidual
Foto 2.8. Encrave de vegetação de Savana na Estação Ecológica Barreiro Rico39
Foto 2.9. Em primeiro plano área de pastagem e fragmento florestal da Fazenda Barreiro Rico, ao fundo Represa de Barra Bonita40
Figura 3.1. Tipos vegetacionais presentes na área proposta para a criação de uma unidade de conservação entre Barreiro Rico em Anhembi e Tanquã em Piracicaba45
Figura 3.2. Remanescente de Floresta Estacional Semidecidual, Barreiro Rico, Anhembi-SP 47
Figura 3.3. Exemplar de guaritá Astronium graveolens, Barreiro Rico, Anhembi-SP47
Figura 3.4. Exemplar de peroba rosa Aspidosperma polyneuron, Barreiro Rico, Anhembi-SP. 48
Figura 3.5. Canavial em primeiro plano, e em segundo plano, remanescente de Floresta Estacional Semidecidual, Barreiro Rico, Anhembi-SP48

Figura 3.6. Pastagem em primeiro plano, e em segundo plano, remanescente de Floresta Estacional Semidecidual, Barreiro Rico, Anhembi-SP
Figura 3.7. Remanescente de Floresta Estacional Decidual, Barreiro Rico, Anhembi-SP 50
Figura 3.8. Exemplar de caviúna Machaerium scleroxylon, Barreiro Rico, Anhembi-SP 50
Figura 3.9. Exemplar de cabreúva Myroxylon peruiferum, Barreiro Rico, Anhembi-SP51
Figura 3.10. Remanescente com vegetação secundária com intensa alteração antrópica, Barreiro Rico, Anhembi-SP
Figura 3.11. Remanescente de Floresta Estacional Semidecidual Aluvial, Tanquã, Piracicaba-SP.
Figura 3.12. Encrave de Savana arborizada (Cerrado denso), Barreiro Rico, Anhembi-SP 54
Figura 3.13. Espécies típicas de Savana (Cerrado) a) barbatimão Stryphnodendron adstringens e b) pinha do cerrado Duguetia furfuracea, Barreiro Rico, Anhembi-SP
Figura 3.14. Exemplar de copaíba Copaiffera langsdorfii em Ecótono Savana/ Floresta Estacional Semidecidual, Barreiro Rico, Anhembi-SP
Figura 3.15. Formação Pioneira sobre Influência Aluvial, Tanquã, Piracicaba-SP 56
Figura 3.16. Formação Pioneira sobre Influência Aluvial, Tanquã, Piracicaba-SP 57
Figura 3.17. Formação Pioneira sobre Influência Aluvial ocupando antigo fundo de vale, Tanquã, Piracicaba-SP57
Figura 4.4. Localidades amostradas durante o trabalho de campo entre 23 e 26/06/2018 81
Figura 4.5. Número de espécies de mamíferos registradas na área de estudo e número de espécies consideradas ameaçadas de extinção, em relação às categorias de ecossistemas reconhecidas
Figura 4.6. Mamíferos de grande porte registrados no fragmento Viraeiro/Tabatinguera, Fazenda Bacury
Figura 4.7. Distribuição das espécies nas categorias de permanência na área de estudo em relação aos conjuntos de ecossistemas considerados
Figura 4.8. Número de espécies de aves registradas na área de estudo e de espécies consideradas ameaçadas de extinção, em relação às categorias de ecossistemas reconhecidas.
Figura 4.9. Curva de acúmulo de espécies para a avifauna de Barreiro Rico, mostrando uma tendência de estabilização no acréscimo de espécies com apenas 10 registros novos nos últimos 15 anos
Figura 4.10. Alguns vetores de degradação dos ecossistemas do Tanquã, extração de areia e resíduos plásticos
Figura 4.11. Pontos de registros de algumas espécies de mamíferos (acima) e aves ameçadas de extinção, ilustrando a necessidade de criação ou ampliação das unidades de conservação existentes na área de estudo

pastagens por cultivos. Fazenda São Francisco do Tietê	
Jacupemba Penelope superciliaris macho (íris vermelha), espécie quase ameaçada de extinç no estado de São Paulo devido à perda de habitat e caça. Fazenda Bacury	-
Tuiuiú Jabiru mycteria, garças-brancas-grandes Ardea alba, colhereiros Platalea ajaja e jaçar Jacana jacana ao fundo à esquerda, Tanquã 15/10/2016. Notar os bancos de areia durante a estação chuvosa	a
Figura 5.1. Imagem de satélite do Google Earth [®] com a localização da área proposta para a á de estudo original, dos pontos de monitoramento da CETESB e do posto meteorológico da ESALQ/USP.	
Figura 5.2. Mapa das bacias hidrográficas dos rios Piracicaba, Capivari e Jundiaí - PCJ, definio como Unidade de Gerenciamento de Recursos Hídricos 05 (UGRHI 5)	
Figura 5.4. Precipitação média mensal na região estudada no período de 1917 a 2017. As lin verticais em vermelho indicam a amplitude dos valores. Dados obtidos do posto meteorológ da ESALQ/USP.	gico
Figura 5.5. Representação gráfica do balanço hídrico climatológico na região estudada para período de 1917 a 2017.	
Figura 5.6. Rede de drenagem da área proposta para a criação da unidade de conservação.	157
Figura 5.7. Vista do rio Piracicaba no bairro Tanquã, Piracicaba	157
Figura 5.8. Limites da futura unidade de conservação e localização dos pontos de monitoramento da qualidade da água da Rede Básica da CETESB	159
Figura 6.1.1: Mapa Geomorfológico do Estado de São Paulo (ROSS & MOROZ, 1997) com o limite proposto para a área de estudo	166
Figura 6.1.2: Mapa geológico da área da área de estudos	168
Figura 6.1.3: Mapa Geomorfológico de ROSS & MOROZ (1997) com o limite proposto para a área do Barreiro Rico-Tanquã.	
Figura 6.1.4: Em destaque, extensa planície fluvial (Apf) ao longo do baixo curso do rio Piracicaba.	170
Figura 6.2.1. Localização da área da proposta de criação de unidade de conservação	173
Figura 6.2.2. Caracterização geológica-geomorfológica da área	174
Figura 6.2.3. Caracterização da cobertura da terra da área de estudos	175
Figura 6.2.4. Mapa de Perigo de Escorregamento	176
Figura 6.2.5. Mapa de Perigo de Inundação	176
Figura 6.2.6. Mapa de Vulnerabilidade de Áreas de Uso Residencial/Comercial/Serviço	177
Figura 6.2.8. Mapa de Risco de Inundação em Áreas de Uso Residencial/Comercial/Serviço.	178
Figura 7.1. Mapa de localização da área de estudo Barreiro Rico – Tanquã	180

Figura 7.2. Exemplo de erosões lineares na área de estudo Barreiro Rico - Tanquã 182
Figura 7.3. Mapa de solos da área de estudo Barreiro Rico - Tanquã
Figura 7.4. Gleissolo Háplico nas áreas brejosas do Tanquã187
Figura 7.5. Relevo de colinas com Latossolos Vermelho-Amarelos de textura média 188
Figura 7.6. a) Área de ocorrência de Argissolos na base do morro residual do mirante; b) Argissolo Vermelho-Amarelo textura arenosa/média189
Figura 7.7. Neossolo Litólico textura média em relevo de morro residual substrato arenito 190
Figura 7.8. Relevo colinoso com plantio de cana de açúcar sobre Neossolo Quartzarênico 190
Figura 7.9. Primeiro plano relevo de colinas com pastagem e domínio de Argissolos Vermelho- Amarelos; no segundo plano, escarpa com vegetação de Floresta Semidecidual a Decidual sobre Neossolos Litólicos
Figura 7.10. Topos e meia vertentes, com pastagem ou cana de açúcar sobre Argissolos; rupturas de declive com vegetação nativa representando associação de Neossolos Litólicos e Argissolos; e fundo de vale com vegetação herbácea/graminóide sobre Gleissolos
Figura 7.11. Região do Tanquã. Em primeiro plano, área brejosa com Gleissolos e solos hidromórficos associados; ao fundo nas duas fotos, relevo aplanado onde desenvolvem Latossolos Vermelho-Amarelos e Neossolos Quartzarênicos
Figura 7.12. Paisagem esquemática da distribuição dos solos na área do Barreiro Rico e Tanquã
Figura 7.13. Paisagem esquemática da distribuição dos solos na área do Barreiro Rico e Tanquã
Figura 7.14. Mapa de declividade da área de estudo Barreiro Rico - Tanquã 195
Figura 7.15. Mapa de ocorrência de erosão linear na área de estudo Barreiro Rico – Tanquã.
Figura 7.16. Erosões por desvio de água de estrada vicinal em Argissolo Vermelho-Amarelo.199
Figura 7.17. Mapa de fragilidade dos solos da área de estudo Barreiro Rico – Tanquã 203
Figura 8.1. Localização da área de estudo
Tabela 8.2 - indicadores sintéticos do IPRS na área de estudo em 2014208
Figura 9.1 - Matriz com os objetivos de conservação relacionados à criação e manejo das categorias e unidade de conservação brasileiras
Figura 9.2 – Matriz de enquadramento nas categorias do SNUC elaborado para o sistema faxinal Mandirituba, PR
Figura 9.3 – Limites das APAs Tanquã-Rio Piracicaba e Barreiro rico, destacando sua inserção municipal
Figura 9.4 – Limites das APAs Tanquã-Rio Piracicaba e Barreiro Rico, destacando as unidades de conservação adjacentes e interna

LISTA DE TABELAS

Tabela 1.1. Síntese dos diálogos desenvolvidos entre o Sistema Ambiental Paulista e os setores interessados na criação da Unidade de Conservação
Tabela 3.1. Tipos vegetacionais presentes na área proposta para criação de uma unidade de conservação entre Barreiro Rico em Anhembi e Tanquã em Piracicaba, expressos em área (ha) e porcentagem
Tabela 3.2. Espécies herbáceo-arbóreas registradas na área proposta para criação de Unidade de Conservação entre Barreiro Rico em Anhembi e Tanquã em Piracicaba
Tabela 3.3. Espécies ameaçadas de extinção registradas na área proposta para a criação de unidade de conservação entre Barreiro Rico em Anhembi e Tanquã em Piracicaba
Tabela 3.4. Espécies exóticas registradas na área proposta para a criação de unidade de conservação entre Barreiro Rico em Anhembi e Tanquã em Piracicaba
Tabela 4.1. Espécies de mamíferos ameaçadas de extinção, vulneráveis (VU) e em perigo (EN), registradas na área de estudo, segundo as listas de São Paulo, do Brasil e da IUCN
Tabela 4.2. Espécies de aves endêmicas ao bioma Mata Atlântica (Lima, 2013) registradas na área de estudo
Tabela 4.3. Espécies de aves ameaçadas de extinção, vulneráveis (VU), em perigo (EN) e criticamente em perigo (CR), registradas na área de estudo, segundo as listas de São Paulo, do Brasil e da IUCN
Tabela 4.4. Espécie migratórias que se reproduzem na América do Norte registradas na área de estudo, principalmente durante a estação chuvosa, agosto a abril
Tabela 4.5. Espécies de peixes ameaçadas de extinção, vulneráveis (VU), em perigo (EN) e criticamente em perigo (CR), registradas na área de estudo, segundo as listas de São Paulo e de Brasil
Tabela 4.6. Espécies de peixes exóticas registradas na área de estudo e sua possível fonte de introdução
Tabela 4.7. Principais espécies ou grupos de peixes pescados, em relação à porcentagem do volume desembarcado (%), pelos pescadores da região da represa de Barra Bonita 10
Anexo 4 I. Mamíferos registrados na área de estudo
Anexo 4 II. Aves registradas na área de estudo
Anexo 4 III. Anfíbios registrados na área de estudo
Anexo 4 IV. Répteis registrados na área de estudo
Anexo V. Peixes registrados na área de estudo
Tabela 5.1. Subdivisão da UGRHI 5 - PCJ em sub-bacias de drenagem
Tabela 2.2. Balanço hídrico climatológico na região estudada para o período de 1917 a 2017.

Tabela 5.1. Descrição dos Pontos de monitoramento na bacia do Rio Piracicaba utilizados para diagnóstico da qualidade da água na futura unidade de conservação	
Tabela 5.2. Média dos resultados do monitoramento realizado em 2017 e dos últimos cinco anos (2012 a 2016) para as variáveis sanitárias e hidrobiológicas	9
Tabela 5.3. Média de 2017 e dos últimos 5 anos (2012 a 2016) para o IQA e IVA nos pontos PCAB 02800 e PCPB 02500	1
Tabela 5.4. Categorias de classificação do IQA e do IVA	1
Tabela 6.1.1: Matriz dos índices de dissecação do relevo	5
Tabela 7.1. Demonstrativo de área das unidades mapeadas	4
Tabela 7.2. Extensão e distribuição das Ordens de solos referentes à área de estudo 18	6
Tabela 7.3. Síntese dos elementos do meio físico, potencialidades/restrições e grau de fragilidade dos solos	1
Tabela 8.1. Dados Demográficos dos municípios da área de estudo20	7
Tabela 8.3. Indicadores de Grupos do IPRS	9
Tabela 8.4. Produto Interno Bruto total e por setor de atividade econômica (2015)21	0
Tabela 8.5. Municípios, região turística, circuitos e roteiros	1
Tabela 9.1 – Grupos e categorias de Unidades de Conservação da Natureza conforme o SNUC	2
TABELA 9.1 – Porcentagem de cada município abarcada pela APA Tanquã-Rio Piracicaba 21	7
TABELA 9.2 – Porcentagem de cada município abarcada pela APA Barreiro Rico21	7
TABELA 9.3 – Área da APA Tanquã-Rio Piracicaba distribuída pelos municípios21	7
TABELA 9.4 – Área da APA Barreiro Rico distribuída percentualmente pelos municípios 21	7
Tabela 9.5 – Simulação do acréscimo do repasse do ICMS (ICMS Ecológico) que os municípios receberão a partir da criação das APAs	3

1. INTRODUÇÃO

1.1 Apresentação da proposta

O interior do estado de São Paulo foi severamente afetado pelo desmatamento em larga escala especialmente durante o século XX, com o avanço das culturas agrícolas e da pecuária (Victor et. al., 2005) e, mais recentemente, pelos impactos da expansão urbana. Se, por um lado, cerca de apenas 17,5% do estado é coberto por sua vegetação nativa, a situação no interior é ainda mais crítica: restam escassos 6,4% da Floresta Estacional Semidecidual (mata atlântica do interior) e 2,8% das formações de cerrado, em relação às suas coberturas originais (SÃO PAULO, 2010).

As matas da antiga fazenda Barreiro Rico são objeto de interesse da comunidade científica desde pelo menos a década de 1950, em função de sua expressiva biodiversidade de flora e fauna, com notável produção científica sobre os atributos da região ao longo dessas décadas (Instituto Florestal, 2004). A área é simbólica por abrigar cinco espécies de primatas, com destaque ao muriqui-do-sul, a maior espécie de primata das Américas, ameaçada de extinção.

Essa importância resultou, em 2006, na criação da Estação Ecológica do Barreiro Rico, com 292,82 hectares, cuja propriedade foi posteriormente adquirida pela Fundação Florestal. A necessidade de ampliação da proteção dos fragmentos florestais da região levou a Secretaria do Meio Ambiente de São Paulo a criar a Área Sob Atenção Especial do Estado em Estudo para a Expansão da Biodiversidade – ASPE – do Barreiro Rico, por meio da Resolução SMA nº 36, de 26 de maio de 2015. Essa figura, reconhecida como "Área de Interesse Ambiental" pelo Sistema de Informação e Gestão de Áreas Protegidas e de Interesse Ambiental do Estado de São Paulo – SIGAP (SÃO PAULO, 2014), objetivava a realização de estudos técnicos para propor estratégias mais específicas de conservação desses ecossistemas ameaçados.

Pelo Decreto nº 60.519, de 5 de junho de 2014, o governador de São Paulo criou a Comissão Permanente de Proteção dos Primatas Paulistas – Pró-Primatas Paulistas, cujo objetivo "é o de promover o respeito, o conhecimento científico, a conservação, a recuperação dessas espécies em seu estado e 'habitat' natural e a educação ambiental". As matas do Barreiro Rico sempre se constituíram em objeto de preocupação dessa Comissão.

Posteriormente, em âmbito nacional, a "Operação Primatas – Ações Críticas para a Conservação de Primatas Brasileiros Ameaçados de Extinção" foi estruturada e proposta em agosto de 2017 durante o XVII Congresso Brasileiro de Primatologia, em Pirenópolis, estado de Goiás. O objetivo da iniciativa é catalisar ações, em alinhamento com as estratégias estabelecidas nos Planos de Ação Nacional – PANs – para a conservação das 35 espécies de primatas brasileiros ameaçadas de extinção que constam na "Lista Nacional Oficial de Espécies da Fauna Ameaçadas de Extinção". A Portaria MMA nº 469, de 13 de dezembro de 2017, publicada no Diário Oficial da União - DOU em 14 de dezembro de 2017, definiu oito ações prioritárias; a "Ação Prioritária 8" estabelece a "Implementação das áreas protegidas e mosaicos nas florestas de Barreiro Rico e São Francisco Xavier para proteção do muriqui-do-sul (SP)" (MMA, 2017).

Reuniões integradas entre as supracitadas iniciativas estadual e federal no ano de 2018 deflagraram o processo da realização de estudos para criação de unidade de conservação – UC - na ASPE Barreiro Rico.

As primeiras avaliações técnicas no âmbito desse processo recomendaram que fosse incluída nos estudos a vizinha região da planície de inundação do Tanquã, no rio Piracicaba, em função de sua notória biodiversidade de aves aquáticas. Conhecida como "pantaninho paulista", esse ecossistema criado a partir da instalação da barragem de Barra Bonita no rio Tietê se configura num dos principais hábitats estaduais para espécies migratórias.

A relevância ecológica desse conjunto de ambientes é objeto de análise deste relatório técnico que evidencia, com fartura de elementos, sua importância em âmbito estadual para se constituir em unidade de conservação ao abrigo da Lei 9.985/2000 – a Lei Federal do Sistema Estadual de Unidades de Conservação, o SNUC (BRASIL, 2000).

1.2 Metodologia utilizada

Na segunda quinzena de maio de 2018, o secretário do Meio Ambiente determinou que técnicos e pesquisadores do Sistema Ambiental Paulista elaborassem documento técnico sobre as regiões do Barreiro Rico e do Tanquã visando a avaliar se os atributos ambientais do território justificavam a criação de unidade de conservação.

Para essa finalidade, foram mobilizados profissionais os seguintes entes da Secretaria do Meio Ambiente: Fundação Florestal, Instituto Florestal, Instituto Geológico, Instituto

de Botânica, Coordenadoria de Planejamento Ambiental, CETESB e Gabinete do Secretário do Meio Ambiente.

Segundo a Lei do Sistema Nacional de Unidades de Conservação, entende-se por unidade de conservação um "espaço territorial e seus recursos ambientais, incluindo as águas jurisdicionais, com características naturais relevantes, legalmente instituído pelo Poder Público, com objetivos de conservação e limites definidos, sob regime especial de administração, ao qual se aplicam garantias adequadas de proteção".

O relatório foi elaborado majoritariamente com dados secundários, abundantes para a região, mas também foram produzidos dados primários e checagens de legenda por meio de expedições de campo. Reuniões intermediárias possibilitaram a integração de algumas informações e a confirmação de que a região apresentava atributos suficientes para a criação de unidade de conservação.

Mediante o diagnóstico dos meios físico, biótico e social, a proposta se consuma com o enquadramento do território em uma ou mais das categorias do SNUC, conforme será verificado no Capítulo 9 - Conclusões.

1.2.1 Estabelecimento dos perímetros de estudos inicial e refinamento para a proposta final

Como ponto de partida para a elaboração do relatório técnico, a equipe propôs um perímetro inicial de estudos, conforme imagem abaixo:

Figura 1.1. Perímetro inicialmente estabelecido para área de estudo de criação de unidade de conservação (municípios abrangidos)

Proposta com área aproximada de 71.000 ha

Figura 1.2. Perímetro inicialmente estabelecido para área de estudo de criação de unidade de conservação, sobre imagem de satélite

O perímetro acima delimitado, com aproximadamente 71.000 ha, apresenta o polígono da área de estudos inicial, destacando a ASPE e a Estação Ecológica Barreiro Rico.

A lógica desse primeiro recorte territorial era a abrangência de três compartimentos distintos e integrados, destacando três conjuntos de atributos, a saber:

- a) ASPE Barreiro Rico.
- b) Região do Tanquã, no rio Piracicaba, e trechos do rio à sua montante e jusante.
- c) Estação Ecológica do Ibicatu, áreas circunvizinhas e bacia de contribuição do Tanquã e do rio Piracicaba.

A partir desse recorte inicial, foram feitos os primeiros estudos territoriais, a partir dos quais foi planejada uma expedição de campo com parte da equipe multidisciplinar, que ocorreu nos dias 25 e 26 de junho de 2018.

A visita técnica de campo às porções terrestres e aquáticas do território permitiu um olhar mais acurado dos aspectos da paisagem e da escala de conservação propostos. Análises de prós e contras entre diferentes "dimensões finais" da proposta permitiram à equipe avaliar que os limites da unidade de conservação deveriam focar nos atributos das regiões do Barreiro Rico, do Tanquã e adjacências, possibilitando esforços de gestão mais concentrados desse território.

Dessa forma, um segundo polígono, reduzido, foi estabelecido já visando à propositura de limites para unidade de conservação propriamente dita, conforme imagem abaixo:

Figura 1.3. Perímetro proposto para a criação de unidade de conservação (aproximadamente 44.000 ha) em comparação à área original de estudos

1.3 O Processo de criação da unidade de conservação

Do ponto de vista legal, os dois principais referenciais que norteiam a criação de unidades de conservação no estado de São Paulo são a Lei do SNUC e o Decreto Estadual do SIGAP – Sistema de Informação e Gestão de Áreas Protegidas e de Interesse Ambiental do Estado de São Paulo.

Abaixo estão os principais artigos dessas duas legislações que tratam de criação de unidades de conservação:

- Lei do Sistema Nacional de Unidades de Conservação – SNUC:

. . .

DA CRIAÇÃO, IMPLANTAÇÃO E GESTÃO DAS UNIDADES DE CONSERVAÇÃO Art. 22. As unidades de conservação são criadas por ato do Poder Público. § 1º (VETADO)

- § 2º A criação de uma unidade de conservação deve ser precedida de estudos técnicos e de consulta pública que permitam identificar a localização, a dimensão e os limites mais adequados para a unidade, conforme se dispuser em regulamento.
- § 3º No processo de consulta de que trata o § 2º, o Poder Público é obrigado a fornecer informações adequadas e inteligíveis à população local e a outras partes interessadas.
- § 4º Na criação de Estação Ecológica ou Reserva Biológica não é obrigatória a consulta de que trata o § 2º deste artigo.
- Decreto Estadual do SIGAP Sistema de Informação e Gestão de Áreas Protegidas e de Interesse Ambiental do Estado de São Paulo:

- - -

Da Criação, da Alteração dos Limites e da Desafetação Das Unidades de Conservação

Artigo 8º - As unidades de conservação estaduais serão criadas e poderão ter seus limites, finalidades e afetação alterados nos termos estabelecidos pela legislação específica, atendidos os procedimentos previstos neste decreto.

Artigo 9º - A criação de uma unidade de conservação estadual deverá atender aos seguintes procedimentos preparatórios:

- I constatação, por meio de estudos técnicos, da existência de atributos socioambientais que justifiquem a instituição de garantias adequadas de proteção à área, com identificação da localização, dimensão, limites e indicação da categoria para a unidade, que deverão indicar, ainda, eventuais restrições ambientais já incidentes sobre a área em questão;
- II estudo da situação fundiária da área, indicando as providências a serem tomadas para viabilizar a criação da unidade de conservação, levando-se em conta a existência de eventuais processos voltados à instituição de terras quilombolas e demarcação de terras indígenas;

III – fornecimento, por parte do Poder Público, das informações à população local e a outras partes interessadas, de forma adequada e inteligível a respeito da criação da unidade de conservação;

IV – realização de consulta pública em um ou mais Municípios e povoados abrangidos pela área da unidade de conservação a ser criada, sendo facultativa a realização de consulta pública na criação de Estação Ecológica e Reserva Biológica;

 V – publicação de resolução do Secretário do Meio Ambiente, com indicação da categoria da unidade de conservação a ser criada, acompanhada de resumo das justificativas para a criação, de memorial descritivo e mapa da área e das questões fundiárias sobre ela incidentes;

VI – manifestação do CONSEMA, com base nas justificativas técnicas apresentadas para a criação, no memorial descritivo, no mapa da área, nas questões fundiárias e nas manifestações da consulta pública, uma vez esgotado o prazo de impugnação de que trata o artigo 10 deste decreto, ou após a sua efetiva apreciação pelo Secretário do Meio Ambiente.

...

Artigo 11 – Concluídos os procedimentos preparatórios a que se refere o artigo 8º deste decreto, a proposta de criação da unidade de conservação estadual será submetida ao Governador do Estado.

...

Ressalte-se que os estudos fundiários suprarreferidos devem ser realizados para as situações em que estejam previstas desapropriações, o que não se trata do caso em tela.

1.4 Comunicação e mobilização para a proposta

As exigências legais acima mencionadas, na prática, se desdobram em inúmeras outras atividades e detalhes que transformam um processo de criação de uma unidade de conservação – UC - em algo bastante complexo.

Um dos aspectos principais é o diálogo com os setores da sociedade envolvidos na proposta, que possibilite informar e ouvir sugestões sobre a criação da UC.

Paralelamente à elaboração dos estudos técnicos, uma equipe da Fundação Florestal e do Instituto Florestal percorreu o território para expor a iniciativa às prefeituras e outros setores envolvidos. Em síntese, a seguinte sequência de diálogos foi desenvolvida entre o Sistema Ambiental Paulista e os setores interessados:

Tabela 1.1. Síntese dos diálogos desenvolvidos entre o Sistema Ambiental Paulista e os setores interessados na criação da Unidade de Conservação.

LOCAL	DATA	PARTICIPANTES
Botucatu	12 de junho	Secretário Municipal de Meio Ambiente
São Pedro	15 de junho	Coordenador Municipal de Meio Ambiente
Anhembi	15 de junho	Diretor do Departamento de Meio Ambiente e Agricultura
Piracicaba	29 de junho e 12 de julho	Prefeito Municipal, Secretário Municipal do Meio Ambiente, equipes técnicas da administração municipal, Câmara de Vereadores, Escola Superior de Agricultura Luiz de Queiroz, organizações da sociedade civil, Coplacana, Ministério Público Estadual/GAEMA
Santa Maria da Serra	25 de julho	Assessor Jurídico da Prefeitura Municipal
Dois Córregos	25 de julho	Prefeito Municipal, Diretor e equipe técnica do Departamento de Agricultura e Meio Ambiente

De forma geral, pode-se dizer que a aceitação da proposta dessa primeira rodada de diálogos foi positiva.

Reuniões adicionais de esclarecimento poderão ocorrer durante todo o prazo em que a iniciativa estiver aberta para discussão.

Outro marco de comunicação da proposta é a realização de audiência pública para permitir comunicação e debate ampliados sobre a criação das unidades de conservação. A audiência, que será realizada em 28 de agosto de 2018 na cidade de Piracicaba, será aberta à população e divulgada em jornal de grande circulação do estado, jornal e rádios locais.

2. USO E OCUPAÇÃO DA TERRA DA ÁREA

2.1. INTRODUÇÃO

A área Barreiro Rico - Tanquã localiza-se no estado de São Paulo e abrange seis municípios: Botucatu, Anhembi, Piracicaba, São Pedro, Santa Maria da Serra e Dois Córregos. A delimitação da área de estudo englobou parte desses municípios que possuem bacias hidrográficas cujos rios e córregos drenam em direção ao rio Piracicaba.

A Fazenda Barreiro Rico situada no município de Anhembi, Estado de São Paulo é uma das localidades brasileiras cuja avifauna é melhor conhecida. Localizada próxima à confluência dos rios Piracicaba e Tietê, entre 450 e 586 metros de altitude, a fazenda apresenta três fragmentos de mata estacional semidecidual (320, 500 e 1400 ha), pequenas matas ciliares, um enclave de cerrado *strictu senso* de cerca de 5 ha, pastagens, canaviais, pomares e brejos na margem esquerda do rio Piracicaba, represado pela barragem de Barra Bonita desde 1961. No total 351 espécies de aves foram registradas nos diversos ambientes da fazenda (Antunes e Willis, 2003).

Conforme Robinson (2017), as áreas úmidas são reconhecidas como prioritárias para a conservação da biodiversidade global e estão entre os ecossistemas mais frágeis e ameaçados do planeta por estarem sujeitos a impactos antrópicos na terra e na água. Estima-se que, no mundo todo, pelo menos 50% destes ambientes tenham sido perdidos nos últimos cem anos. Para São Paulo, os remanescentes da vegetação de várzea, já ocupavam apenas 0,63% do território estadual em 2001. As várzeas do Tanquã ocorrem no rio Piracicaba em uma planície de inundação cujo pulso de inundação natural foi invertido em relação à sazonalidade de chuvas locais pela construção de uma barragem à jusante. No local ocorrem 94 espécies de aves aquáticas, 16 das quais realizam movimentos migratórios, oito são ameaçadas no estado de São Paulo, quatro são quase ameaçadas e duas não possuem dados suficientes na literatura para concluir seu grau de ameaça.

Desta forma, as áreas onde situam-se a Fazenda Barreiro Rico e Fazenda São Francisco, no município de Anhembi, que abrigam grandes remanescentes de Floresta Estacional Semidecidual com fauna e flora ameaçadas de extinção, bem como a área do Tanquã, situada no município de Piracicaba, são extremamente relevantes do ponto de vista de conservação da biodiversidade.

Conforme Santos (2004), o uso e ocupação das terras é um tema básico para o planejamento ambiental porque retrata as atividades humanas que implicam em pressão e impacto sobre os elementos naturais. É uma parte essencial para a análise de fontes de poluição e um elo importante entre as informações dos meios biofísico e socioeconômico. Em geral, as formas de uso e ocupação são identificadas (tipos de uso), espacializadas (mapas de uso), caracterizadas (pela intensidade de uso e indícios de manejo) e quantificadas (percentual de área ocupada pelo tipo). As informações sobre esse tema devem descrever não só a situação atual, mas as mudanças recentes e o histórico de ocupação da área de estudo.

Para IBGE (2013), o levantamento do Uso e da Cobertura da Terra indica a distribuição geográfica da tipologia de uso, identificada por meio de padrões homogêneos da cobertura terrestre. Comporta análises e mapeamentos, e é de grande utilidade para o conhecimento atualizado das formas de uso e de ocupação do espaço, constituindo importante ferramenta de planejamento e de orientação à tomada de decisão.

O mapeamento e caracterização do uso da terra permite definir os limites e a categorização de unidades de conservação.

Com base nas premissas anteriormente apresentadas, este trabalho tem como objetivos realizar o mapeamento do uso e ocupação da terra e contribuir para a criação de unidade de conservação na área de estudo "Barreiro Rico - Tanquã".

2.2. MATERIAL E MÉTODOS

2.2.1. Localização da área de estudo

A área de estudo "Barreiro Rico - Tanquã" com 43.885,6 ha, está localizada nos municípios de Botucatu, Anhembi, Piracicaba, São Pedro, Santa Maria da Serra e Dois Córregos, entre as coordenadas geográficas 22°32" e 22°46' latitude Sul e 48°22' e 47°52' longitude WGr (Figura 2.1).

A definição dos limites da área de estudo baseou-se na delimitação de bacias hidrográficas que englobam rios e córregos desses municípios que drenam em direção ao rio Piracicaba.

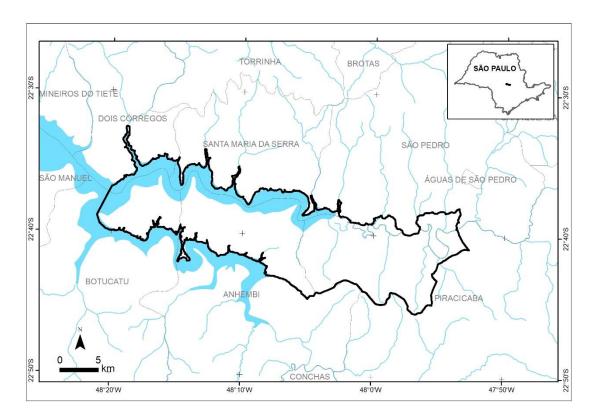


Figura 2.1. Localização da área de estudo "Barreiro Rico - Tanquã"

2.2. Materiais utilizados

Para a realização desse trabalho foram utilizadas imagens de Satélite de alta resolução espacial adquiridas no site: www.digitalglobe.com, são elas:

- World View 02, com resolução de 0,50 cm, de 22 de janeiro de 2016;
- World View 02, com resolução de 0,50 cm, de 24 de junho de 2017;
- Geoeye, com resolução de 0,40 cm, de 28 de setembro de 2017.

Na Figura 2.2 observa-se a articulação das imagens de satélite utilizadas no trabalho.

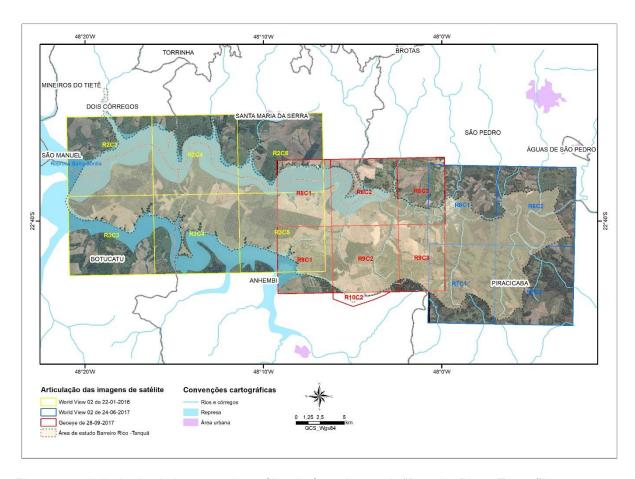


Figura 2.2. Articulação de imagens de satélite da área de estudo "Barreiro Rico - Tanquã".

A precisão planimétrica é compatível com a escala 1:25.000. O formato dos arquivos digitais é "TIFF" (georreferenciado).

2.3. Procedimentos metodológicos

O mapeamento do uso e cobertura da área de estudo "Barreiro Rico - Tanquã" foi executado com base em revisão bibliográfica e cartográfica, análise visual de imagens de satélite (World View e Geoeye) e trabalhos de campo.

A análise visual das imagens de satélite iniciou-se a partir da disponibilização de arquivos vetoriais correspondentes ao Mapeamento do Uso e Cobertura do Solo da UGRHI 5 - PCJ, (SMA e IG, 2013) e Inventário Florestal do estado de São Paulo (2009), ambos recortados para a área de estudo Barreiro Rico - Tanquã. Após a junção desses arquivos, iniciou-se a atualização do mapeamento, com base na utilização de imagens de satélite de alta resolução dos anos de 2016 e 2017.

A classificação do uso e ocupação da terra utilizou, conforme Jensen (2009), os

seguintes elementos de interpretação de imagem: localização; tonalidade e cor;

tamanho; forma; textura; padrão; sombra; altura e profundidade; sítio, situação e

associação.

Conforme Anderson et al. (1979), Florenzano (2002), IBGE (2013) e SMA e IG (2013)

e conforme os objetivos do trabalho, foram definidas as seguintes categorias de uso e

ocupação da terra que serviram de base para a interpretação das imagens de satélite:

Usos Agrícolas: pastagem, solo exposto para plantio agrícola, cana-de-

açúcar, citrus, reflorestamento, campo antrópico, cultura temporária.

• Cobertura vegetal natural: Floresta Estacional Semidecidual, Formação

pioneira com influência fluvial, Vegetação Secundária da Floresta Estacional

Semidecidual, Floresta Estacional Decidual, Savana.

• Outros usos: lagos, lagoas e represas; área edificada, curso d'água, banco de

areia, grande equipamento e mineração.

A seguir, destacam-se as definições de cada uma das categorias de uso da terra

apresentadas anteriormente:

USOS AGRÍCOLAS

Conforme IBGE (2013); SMA e IG (2013)

• Pastagem: áreas de pasto melhoradas ou cultivadas destinadas ao pastoreio;

solo coberto por vegetação de gramíneas ou leguminosas; formação irregular e

presença de árvores para sombreamento e trilhas. Área de pecuária para produção de leite ou para gado de corte e em menor escala, para criação de

equinos.

24

- Solo exposto para plantio agrícola: áreas preparadas para plantio de diversas culturas agrícolas.
- Cana-de-açúcar: tipo de lavoura semipermanente de curta ou média duração, geralmente com ciclo vegetativo inferior a um ano, que após produção deixa o terreno disponível para novo plantio.
- Citrus: tipo de cultura de ciclo longo que permite colheitas sucessivas, sem necessidade de novo plantio a cada ano.
- Reflorestamento: área de cultivo de pinus ou eucalipto para o corte de madeira e/ou extração de resina.
- ¹Campo antrópico: são áreas caracterizadas pela presença de vegetação herbácea, podendo conter espécies exóticas, árvores isoladas ou pequenos agrupamentos, incluem redes de drenagem assoreadas.
- Cultura temporária: cultura de plantas de curta ou média duração, geralmente com ciclo vegetativo inferior a um ano, que após a produção deixam o terreno disponível para novo plantio. Destacam-se cereais, tubérculos e hortaliças, plantas hortícolas, floríferas e medicinais.

COBERTURA VEGETAL NATURAL

(Conforme IBGE, 1991)

 Floresta Estacional Semidecidual: este tipo de vegetação está condicionado pela dupla estacionalidade climática, uma tropical com época de intensas chuvas de verão, seguida por estiagem acentuada e outra subtropical sem período seco, mas com seca fisiológica provocada pelo intenso frio do inverno, com temperaturas médias inferiores a 15º.

¹ Adaptação da classe "Campo natural" (SMA e IG, 2013): vegetação natural não arbórea, existência de estrato exclusivamente gramíneo-lenhoso, podendo estar entremeado por arbustos, fitofisionomia campestre.

Formação pioneira com influência fluvial: ocorre nas planícies aluviais e

mesmo ao redor de planícies aluvionares (pântanos, lagunas e lagoas),

ocorrem frequentemente em terrenos instáveis cobertos de vegetação, em

constante sucessão.

Vegetação Secundária da Floresta Estacional Semidecidual: corresponde a

áreas onde houve intervenção humana para uso da terra, seja com finalidade

mineradora, agrícola ou pecuária, descaracterizando a vegetação primária. Na

área de estudo, correspondem aos setores de fragmentos florestais das

Fazendas São Francisco e Fazenda Barreiro Rico intensamente alterados e

degradados pela ação do fogo que comprometeu o dossel original. Atualmente

encontram-se em regeneração dominados por taquaras e lianas.

Floresta Estacional Decidual: é caracterizada por duas estações climáticas

bem demarcadas, uma chuvosa seguida de longo período biologicamente

seco, ocorre na forma de disjunções florestais apresentando o estrato

dominante predominantemente caducifófio, com mais de 50% dos indivíduos

despidos de folhagem no período desfavorável.

Savana: é definida como uma vegetação xeromorfa preferencialmente de clima

estacional (mais ou menos 6 meses secos), não obstante podendo ser

encontrada também em clima ombrófilo.

OUTROS USOS

Conforme IBGE (2013); SMA e IG (2013)

Lagos, lagoas, represas: represamento artificial de curso d'água construído

para abastecimento d'água, irrigação ou dessedentação de animais. Na área

de estudo destaca-se o Reservatórios de Barra-bonita.

Área edificada: metrópoles, cidades, vilas e áreas de rodovias, incluindo áreas

residenciais, comerciais e de serviços.

26

- Curso d'água: cursos d'água lênticos. Na área de estudo corresponde ao Rio Piracicaba.
- Banco de areia: áreas de deposição de sedimentos que são expostos na estação seca, situados na planície de inundação do rio Piracicaba.
- Grande equipamento: engloba a edificação e toda a área desta se houver. Se
 estiver fora da área urbana e não houver delimitação, restituir apenas
 edificação. Já na área urbana engloba o entorno delimitado, e não apenas a
 edificação.
- Mineração: Extração de substâncias minerais como lavras, minas, lavra garimpeira ou garimpo.

O software ArcGIS 10.5 foi utilizado no processo de interpretação e análise visual das imagens de satélite em formato digital. Após esta etapa, efetuou-se a quantificação das categorias de uso e ocupação da terra, obtendo-se a área ocupada por cada categoria. Finalmente, foi elaborado layout contendo o mapa de uso e ocupação da terra da área de estudo.

Foi realizado trabalho de campo nos dias 25 e 26 de junho de 2018, para conferir as classes de uso da terra mapeadas e produzir documentário fotográfico. Na Figura 3.3 observam-se o trajeto percorrido e os pontos visitados no trabalho de campo.

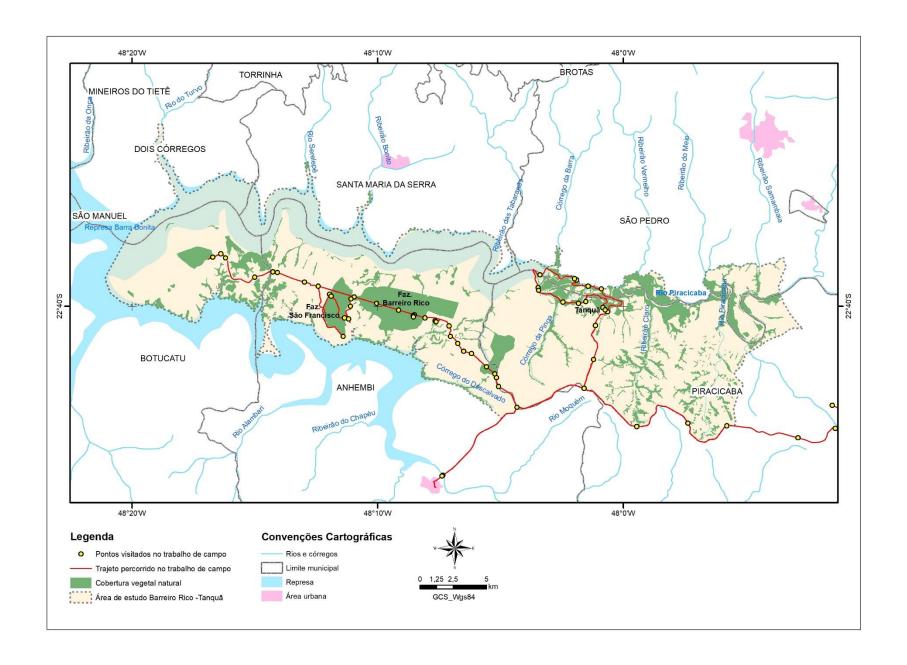


Figura 1.3. Pontos visitados e trajeto percorrido no trabalho de campo.

2.3. RESULTADOS E DISCUSSÃO

Conforme a Figura 2.4, a Tabela 2.1 e o Gráfico 2.1, na área de estudo "Barreiro Rico - Tanquã" destacam-se os Usos Agrícolas com 25.702,6 ha, mais da metade da área de estudo (58,6%).

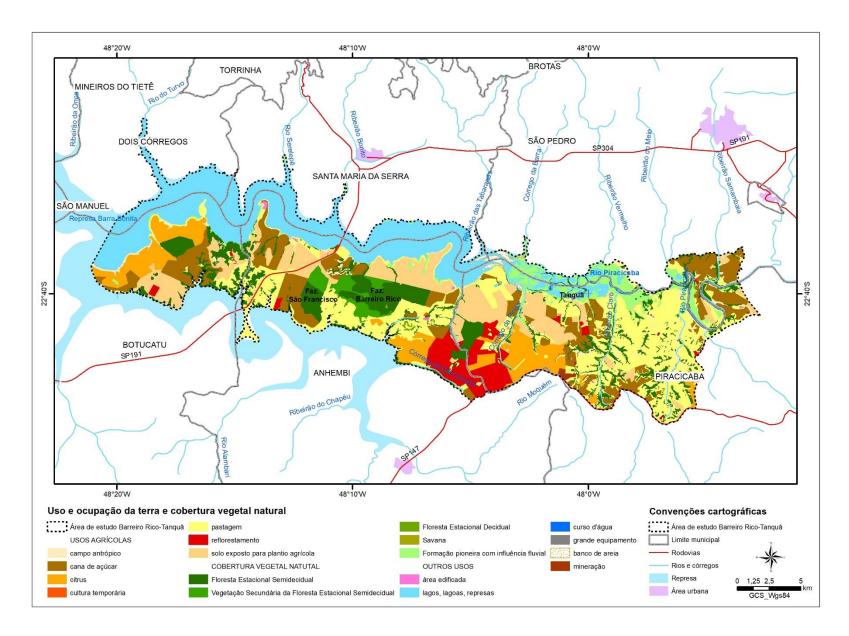
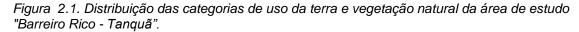
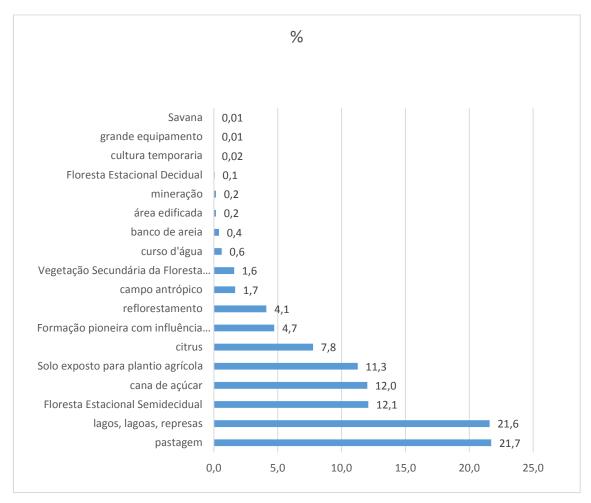




Figura 2.4. Mapa de uso e ocupação da terra da área de estudo "Barreiro Rico - Tanquã.

Tabela 2.1. Categorias de uso da terra e vegetação natural da área "Barreiro Rico-Tanquã".

CATEGORIAS DE USO DA TERRA E VEGETAÇÃO	Área (ha)	%
Usos Agrícolas		
pastagem	9.533,0	21,7
cana de açúcar	5.272,7	12,0
solo exposto para plantio agrícola	4.942,6	11,3
citrus	3.408,5	7,8
reflorestamento	1.806,1	4,1
campo antrópico	733,1	1,7
cultura temporaria	6,6	0,02
Subtotal	25.702,6	58,6
Cobertura Vegetal Natural		
Floresta Estacional Semidecidual	5.308,6	12,1
Formação pioneira com influência fluvial	2.075,5	4,7
Vegetação Secundária da Floresta Estacional Semidecidual	697,1	1,6
Floresta Estacional Decidual	27,7	0,1
Savana	3,4	0,01
Subtotal	8.112,3	18,5
Outros Usos		
lagos, lagoas, represas	9.475,8	21,6
curso d'água	268,9	0,6
banco de areia	177,1	0,4
área edificada	71,6	0,2
mineração	71,4	0,2
grande equipamento	5,8	0,01
Subtotal	10.070,7	22,9
Total	43.885,6	100,0

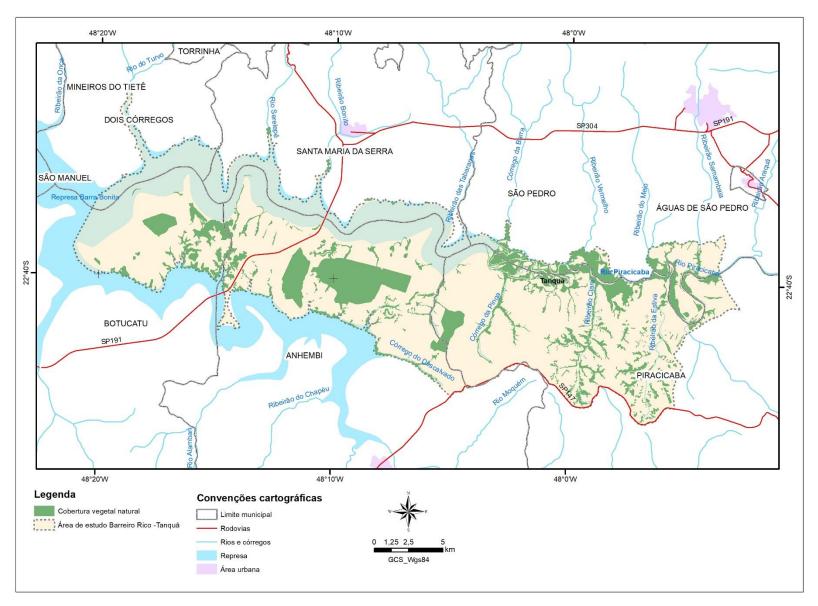
O uso agrícola com maior destaque é a pastagem, com 9.533 ha (21,7%). (Foto 2.1). Ocorre predominantemente nos municípios de Piracicaba e Anhembi, próximo aos grandes fragmentos de vegetação nativa das Fazendas Barreiro Rico e Fazenda São Francisco e no município de Piracicaba, nas bacias do ribeirão Claro e ribeirão da Estiva, que drenam em direção margem esquerda do rio Piracicaba (área do Tanquã).

Foto 2.2. Extensas áreas de pastagem próximo à Estação Ecológica Barreiro Rico.

O segundo tipo de uso agrícola predominante na área de estudo é a cana-de-açúcar, com 5.272,7 ha, (12 %) (Foto 2.2). O terceiro, os solos expostos para plantio agrícola, que ocupam 4.942,6 ha (11,3%) (Foto 2.3). Esse tipo de uso é momentâneo e está associado ao corte da cana-de-açúcar. Logo após o corte, essas áreas são ocupadas novamente por esses cultivos. Somadas, essas duas categorias totalizam 10.215,3 ha.Portanto, ocupam 23,3 % da área de estudo, ultrapassando a área total de pastagens.

Os plantios de cana-de-açúcar distribuem-se praticamente por toda a área de estudo, sendo que no setor oeste, próximos aos grandes fragmentos de vegetação nativa das Fazendas Barreiro Rico e Fazenda São Francisco, caracterizam-se por serem de grandes extensões. Ocupam também parcelas significativas de terras no extremo leste da área de estudo, próximo ao ribeirão Claro e rio Piracicaba.

Foto 2.3. Cultivo de cana-de-açúcar.


Foto 2.4. Em primeiro plano área de solo exposto para plantio agrícola após colheita da cana-de-açúcar.

O quarto tipo de uso agrícola com maior destaque são os citrus com 3.408,5 ha (7,5%). Localizam-se no extremo oeste da área de estudo, próximo à represa de Barra Bonita, no município de Botucatu, e no setor central, nos municípios de Anhembi e Piracicaba, ao lado de áreas de reflorestamento de eucalipto.

O quinto tipo de uso agrícola com maior destaque são os reflorestamentos, com 1.806,1 ha, (4,1%). São predominantemente plantios de eucaliptos voltados à produção de papel e celulose. Localizam-se na porção central da área de estudo, próximo ao córrego do Descalvado, no município de Anhembi e córrego da Pinga, no município de Piracicaba.

O sexto tipo de uso agrícola são os campos antrópicos, com 733,1 ha, (1,7%). Essas áreas são caracterizadas pela presença de vegetação herbácea, podendo conter espécies exóticas, árvores isoladas ou pequenos agrupamentos, incluem redes de drenagem assoreadas. Estão presentes no setor oeste da área de estudo, nas margens do reservatório de Barra Bonita, no município de Botucatu, e no setor leste da área de estudo, ao longo de canais de drenagem do ribeirão Claro e ribeirão da Estiva, envolvidos por áreas de pastagens, no município de Piracicaba. A sétima e última categoria de uso agrícola, são as culturas temporárias, pouco representativas, ocupando apenas 6,6 ha, (0,02%) da área de estudo.

O Grupo "Cobertura Vegetal Natural", ocupa 8.112,3 ha, (18,5%). Na Figura 2.5 observa-se a distribuição da cobertura vegetal natural na área de estudo.

rigura z.o. Distribuição da copertura vegetai fiatural ha area de estudo parreiro kico - ranqua.

Nesse grupo, o tipo florestal predominante é a Floresta Estacional Semidecidual (Foto 2.4), com 5.308,6 ha (12,1%). Ele se distribui por toda a área de estudo. No setor oeste, nos municípios de Botucatu e Anhembi, é representado por grandes fragmentos de vegetação da Fazenda Barreiro Rico e Fazenda São Francisco. À leste da área, situa-se ao longo dos canais de drenagem das bacias do ribeirão Claro e ribeirão da Estiva, constituindo-se como suas áreas de preservação permanente.

Foto 2.4. Floresta Estacional Semidecidual em fundo de vale.

A Formação Pioneira de influência fluvial (Foto 2.5), ocupa uma área de 2.075,5 ha (4,7%). Localiza-se predominantemente nas planícies alagadiças do Tanquã, em algumas drenagens que desembocam na represa de Barra Bonita e também em seu entorno.

Foto 2.5. Planície Aluvial do Rio Piracicaba com Formação Pioneira de influência fluvial.

A Vegetação Secundária da Floresta Estacional Semidecidual (Foto 2.6) com 697,13 ha (1%) é representada por florestas que sofreram intensa alteração devido ao forte efeito de incêndios que ocorreram nos grandes fragmentos florestais das Fazenda Barreiro Rico e Fazenda São Francisco em 2012.

Foto 2.6. Ao fundo, fragmento de vegetação secundária com intensas alterações provocadas por incêndios florestais.

A Floresta Estacional Decidual ocupa área de 27,7 ha (0,1%), portanto com pouca representatividade na área de estudo. Esse tipo de floresta ocorre em solos rasos. No período de estiagem as espécies perdem as folhas, o que caracteriza um aspecto de "floresta seca" (Foto 2.7).

Foto 2.7. Floresta Estacional Decidual.

Na Estação Ecológica Barreiro Rico, encontra-se uma mancha de Savana, com área de 3,4 ha, (0,01%). Trata-se de um encrave de cerrado no interior de um fragmento de Floresta Estacional Semidecidual (Foto 2.8).

Foto 2.8. Encrave de vegetação de Savana na Estação Ecológica Barreiro Rico.

No Grupo "Outros Usos" destaca-se a categoria "lagos, lagoas, represas" com 9.475,8 ha, (21,6%) da área de estudo. Em sua grande parte, essa categoria representa o reservatório de Barra Bonita, criado em 1961 (Foto 2.9).

Foto 2.9. Em primeiro plano área de pastagem e fragmento florestal da Fazenda Barreiro Rico, ao fundo Represa de Barra Bonita.

A categoria "área edificada", com 71,6 ha, (0,2%), é pouco representativa, a não ser pela presença de duas áreas edificadas nas margens da represa de Barra Bonita, no município de Anhembi.

As demais categorias de uso presentes nesse grupo ocupam em torno de 1% da área de estudo, não sendo portanto, muito representativas.

2.4. CONSIDERAÇÕES FINAIS

A área de estudo "Barreiro Rico-Tanquã" apresenta intenso uso antrópico baseado no desenvolvimento de atividades agrícolas. Cultivos e pastagens desenvolvidos sem o emprego de técnicas adequadas de conservação dos solos, contribuem para o surgimento de processos erosivos tais como sulcos, ravinas e voçorocas, e para o carreamento de materiais inconsolidados para os canais de drenagem, assoreando-os.

Os plantios de cana-de-açúcar e os reflorestamentos de espécies exóticas, requerem o uso intensivo de defensivos agrícolas, também carreados para os canais de

drenagem, contribuindo para a poluição hídrica e consequente redução da quantidade de recursos hídricos disponíveis para o abastecimento da população.

A presença de uma densa rede viária na área de estudo, contribui para a grande circulação de veículos e de pessoas, descarte inadequado de resíduos sólidos, ocorrência de incêndios, além do atropelamento da fauna silvestre quando a mesma secciona fragmentos de vegetação remanescentes.

Desta forma, deve-se considerar a adoção de medidas para deter a degradação ambiental observada, seja com a criação de unidades de conservação, restrições à ocupação e demais medidas cabíveis para mitigar o quadro observado.

Recomenda-se a criação de uma Unidade de Conservação de proteção sustentável que objetive conservar e proteger a qualidade ambiental e os sistemas naturais e que colabore para a melhoria de vida da população local e para a proteção dos ecossistemas regionais de modo a conciliar o uso racional dos recursos naturais da área de estudo "Barreiro Rico - Tanquã".

3. VEGETAÇÃO

3.1 Introdução

A ação humana sobre as áreas naturais levou a um aumento crescente no total de áreas degradadas e resultou em paisagens fragmentadas com baixa conectividade entre remanescentes, biodiversidade reduzida e risco de extinção local de espécies (Kageyama et al., 2003).

As projeções apresentadas no relatório-síntese de biodiversidade da Avaliação Ecossistêmica do Milênio (Millennium Ecosystem Assessment, 2005) indicam que as pressões sobre os ecossistemas devem aumentar progressivamente e que os principais vetores diretos de alterações nos ecossistemas são as alterações de habitat, superexploração, invasão por espécies exóticas, poluição e mudanças climáticas.

A manutenção de remanescentes florestais interligados a outros fragmentos por meio de corredores biológicos, consiste em uma das estratégias para conservação de grande número de espécies da Floresta Atlântica (Ribeiro et al. 2009).

Frente a esse cenário, uma das principais estratégias para a preservação da biodiversidade é a criação, implantação e manutenção de Unidades de Conservação - UC (Terborgh & van Schaik, 2002). A seleção de áreas a serem protegidas baseia-se na existência de habitats naturais de alto valor para a conservação, ou seja, aqueles com algum valor ambiental e/ou social e considerados de caráter excepcional ou de importância crítica.

3.2. Método

3.2.1. Mapeamento da vegetação

O mapeamento da vegetação na área proposta para criação de unidade de conservação entre o Barreiro Rico em Anhembi e o Tanquã em Piracicaba foi executado com base em revisão bibliográfica e cartográfica, análise visual de imagens de satélite de alta resolução (World View e Geoeye) e trabalhos de campo. Para o mapeamento da vegetação em tipos vegetacionais utilizou-se o Manual técnico da vegetação brasileira (IBGE, 2012).

Foram utilizados os seguintes materiais: imagens de Satélite de alta resolução adquiridas no site www.digitalglobe.com: World View 02, com 0,50 cm de

resolução, de 22 de janeiro de 2016; World View 02, com 0,50 cm de resolução, de 24 e 25 de junho de 2017; Geoeye, com 0,40 cm de resolução, de 28 de setembro de 2017. A precisão planimétrica é compatível com a escala 1:25.000. O formato dos arquivos digitais é "tiff" (georreferenciado).

A análise visual das imagens de satélite iniciou-se a partir da disponibilização de arquivos vetoriais correspondentes ao Mapeamento do Uso e Cobertura do Solo da UGRHI 5 -PCJ (São Paulo, 2013) e o Inventário Florestal do Estado de São Paulo (São Paulo, 2009), ambos recortados para a área de estudo Barreiro Rico - Tanquã. A partir da junção desses arquivos, partiu-se para a execução da atualização do mapeamento, baseado na utilização de imagens de satélite de alta resolução dos anos de 2016 e 2017.

3.2.2. Lista de espécies

A lista de espécies foi obtida mediante a consulta aos trabalhos científicos desenvolvidos na área de abrangência da proposta de criação da unidade de conservação, no banco de dados do *Species link*, do Centro de Referência em Informação Ambiental (CRIA), e em vistoria realizada em 25 e 26 de junho de 2018. Os nomes científicos e sinonímias foram verificados na base de dados do Catálogo de plantas e fungos do Brasil (Flora do Brasil 2020 em construção, 2018) e a classificação em famílias foi utilizado o Angioperm Phylogeny Group – APG IV (APG IV, 2016).

Para a classificação das espécies de acordo com o seu risco de extinção, foram verificadas as listas disponíveis em diferentes escalas de abrangência: lista estadual (São Paulo, 2016), nacional (Martinelli e Moraes, 2013 e Brasil, 2014) e global (IUCN, 2018).

3.2.3. Tipos vegetacionais

Na área proposta para a criação de uma unidade de conservação entre Barreiro Rico em Anhembi e Tanquã em Piracicaba os remanescentes de vegetação totalizam 8.844,04 ha (Figura 3.1, Tabela 3.1).

Os principais tipos vegetacionais são a Floresta Estacional Semidecidual, com 5.975,51 ha, representando 67,56% da área coberta por vegetação; Formações

pioneiras de influência fluvial, com 2.114,54 ha, 23,91%, a Floresta Estacional Decidual, com 27,72 ha, 0,31%; Ecotono Savana/ Floresta Estacional Semidecidual, com 20,33 ha, 0,23%; Encrave de Savana, com 3,38 ha, 0,04%; e Áreas antrópicas com 702,55 ha, 7,94% (Figura 3.1, Tabela 3.1).

Os principais remanescentes florestais estão situados nas florestas da antiga Fazenda Barreiro Rico, hoje situados nas Fazendas Cambury e São Francisco e na Estação Ecológica de Barreiro Rico. A Estação Ecológica do Barreiro Rico possui 292,82 ha, somada com os outros fragmentos da Fazenda Bacury e São Francisco, de cerca de 1.800 ha, totalizam cerca de 2.100 ha de remanescentes de floresta. Além destas áreas, há vários remanescentes pequenos e esparsos na área de estudo, localizados sobretudo em fundos de vale.

Tabela 3.1. Tipos vegetacionais presentes na área proposta para criação de uma unidade de conservação entre Barreiro Rico em Anhembi e Tanquã em Piracicaba, expressos em área (ha) e porcentagem.

Tipos vegetacionais	Área (ha)	%
Fm - Floresta Estacional Semidecidual Montana	2.051,02	23,19
Fm1 - Floresta Estacional Semidecidual Submontana com forte alteração	419,29	4,74
Fs - Floresta Estacional Semidecidual Submontana	2.708,99	30,63
Fa - Floresta Estacional Semidecidual Aluvial	518,37	5,86
Vs - Vegetação Secundária com forte alteração	277,84	3,14
Cm - Floresta Estacional Decidual Montana	27,72	0,31
SN - Ecótono Savana/Floresta Estacional	20,33	0,23
SNc - Encrave de Savana	3,38	0,04
Pa - Formação Pioneira com influência fluvial	2.114,54	23,91
AA - area antrópica	702,55	7,94
Total Geral	8.844,04	100

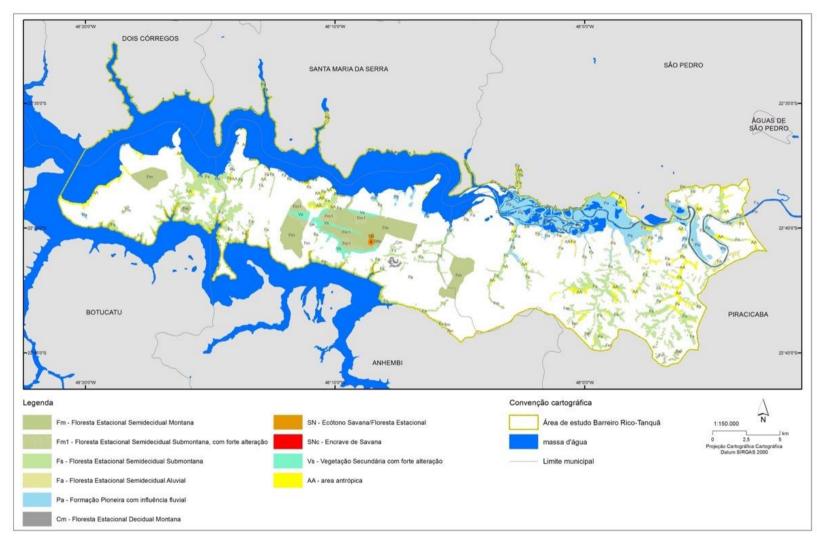


Figura 3.1. Tipos vegetacionais presentes na área proposta para a criação de uma unidade de conservação entre Barreiro Rico em Anhembi e Tanquã em Piracicaba. Organização: M.M. Kanashiro

Floresta Estacional Semidecidual (F)

A presença da Floresta Estacional Semidecidual está condicionada pelo clima estacional da região, em que o inverno apresenta-se com baixas temperaturas e chuvas bastante restritas. Estas condições selecionaram espécies adaptadas, dentre as adaptações destaca-se a perda de folhas na estação seca. A porcentagem das árvores caducifólias que perdem as folhas situa-se entre 20% e 50%. Na Floresta Estacional Semidecidual, nessa região, podem ocorrer as formações submontanas (Fs), de 50 a 500 m; e montanas (Fm), a partir de 500 m (IBGE, 2012).

Segundo o IBGE, este tipo vegetacional distribui-se desde o Estado do Espírito Santo e sul do Estado da Bahia até os Estados do Rio de Janeiro, de Minas Gerais, de São Paulo, norte e sudoeste do Paraná, sul de Mato Grosso do Sul, adentrando pelo sul de Goiás através do Rio Paranaíba, bem como nos Estados de Mato Grosso e de Rondônia. Na forma disjunta, pode ocorrer, ainda, entremeada a formações savânicas especialmente na Região Centro-Oeste.

Uma das características das Florestas Estacionais Semideciduais é a preponderância da família Fabaceae em riqueza de espécies arbóreas. Nas regiões de planaltos areníticos, as espécies deciduais que caracterizam esta formação pertencem aos gêneros *Aspidosperma* (perobas e guatambus), *Astronium* (guarita), *Balfourodendron*, *Copaifera* (pau de óleo), *Handroanthus* (ipês), *Hymenaea* (jatobá) e *Machaerium* (bico de pato).

Na área de estudo, os maiores remanescentes estão situados na região de Barreiro Rico, como mencionado anteriormente. Dentre as árvores que se destacaram na estrutura da floresta, Cesar e Leitão Filho (1990b) encontraram a guaraiúva Savia dictyocarpa, peroba-rosa Aspidosperma polyneuron, guarantã Esenbeckia leiocarpa, peroba Aspidosperma tomentosum, canela branca Ocotea spixiana, Mouriri chamissoana, guaritá Astronium graveolens, canxim Pachystroma ilicifolium, jatobá Hymenea courbaril e copaíba Copaiffera langsdorfii (Figuras 3.2 a 3.6).

Figura 3.2. Remanescente de Floresta Estacional Semidecidual, Barreiro Rico, Anhembi-SP. Foto: M. Pavão

Figura 3.3. Exemplar de guaritá Astronium graveolens, Barreiro Rico, Anhembi-SP. Foto: N.M. Ivanauskas

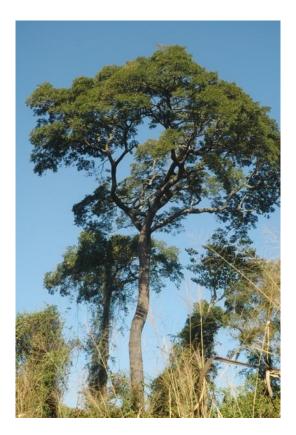


Figura 3.4. Exemplar de peroba rosa Aspidosperma polyneuron, Barreiro Rico, Anhembi-SP. Foto: N.M. Ivanauskas

Figura 3.5. Canavial em primeiro plano, e em segundo plano, remanescente de Floresta Estacional Semidecidual, Barreiro Rico, Anhembi-SP.
Foto: M. Pavão

Figura 3.6. Pastagem em primeiro plano, e em segundo plano, remanescente de Floresta Estacional Semidecidual, Barreiro Rico, Anhembi-SP.

Foto: M. Pavão

Floresta Estacional Decidual (C)

Ocorre em diferentes regiões do país, com estrato superior formado por espécies arbóreas predominantemente caducifólias, com mais de 50% dos indivíduos com perda de folhas no período seco.

Segundo o IBGE (2012), a Floresta Estacional Decidual compreende grandes áreas descontínuas localizadas, do norte para o sul, entre a Floresta Ombrófila Aberta e a Savana (Cerrado); de leste para oeste, entre a Savana-Estépica (Caatinga) e a Floresta Estacional Semidecidual; e, finalmente, no sul na área subtropical, no vale do Rio Uruguai, entre a Floresta Ombrófila Mista (Floresta-de-Araucária) do Planalto Meridional e a Estepe (Campos Gaúchos). Esta formação florestal é dominada por *Anadenanthera*, *Apuleia*, *Machaerium* e *Peltophorum*.

Na área de estudo sua ocorrência está associada a solos rasos e rochosos/ pedregosos. Em local amostrado na região do Barreiro Rico, próximo ao Morro do Cristo, foram encontradas as espécies caducifólias caviúna *Machaerium scleroxylon*, angico *Anadenanthera colubrina*, cabreúva *Myroxylon peruiferum* e bico de pato *Machaerium nyctitans* (Figuras 3.7 a 3.9).

Figura 3.7. Remanescente de Floresta Estacional Decidual, Barreiro Rico, Anhembi-SP. Foto: M. Pavão

Figura 3.8. Exemplar de caviúna Machaerium scleroxylon, Barreiro Rico, Anhembi-SP. Foto: F.A.R.D.P. Arzolla

Figura 3.9. Exemplar de cabreúva Myroxylon peruiferum, Barreiro Rico, Anhembi-SP. Foto: F.A.R.D.P. Arzolla

Vegetação secundária (Vs)

De acordo com o sistema do IBGE (2012), considera-se vegetação secundária aquela presente em áreas previamente ocupadas por vegetação nativa onde houve intervenção humana para o uso da terra. Na área de estudo, estas áreas localizadas na região do Barreiro Rico sofreram corte raso e foram posteriormente atingidas por incêndios florestais, com a perda quase total do componente arbóreo (Figura 3.10).

Figura 3.10. Remanescente com vegetação secundária com intensa alteração antrópica, Barreiro Rico, Anhembi-SP.

Foto: M. Pavão

Floresta aluvial (Fa)

A Floresta aluvial está presente às margens do Rio Piracicaba e nos córregos tributários deste. Há espécies que são particularmente abundantes nesta fitofisionomia como juçara *Euterpe edulis*, guanandi *Calophyllum brasiliense*, ingazeiros *Inga* spp., samambaiaçus *Cyathea* sp., pioneiras de forma geral, dentre outras espécies. Há forte influência do regime de cheia e inundação do rio, havendo a presença de espécies tolerantes ao encharcamento (Figura 3.11).

Figura 3.11. Remanescente de Floresta Estacional Semidecidual Aluvial, Tanquã, Piracicaba-

Foto: M. Pavão

Encrave de Savana (SNc)

Segundo Assumpção et al. (1982) a ocorrência de uma mancha de Savana (Cerrado) na Estação Ecológica Barreiro Rico em meio à floresta pode estar relacionada à presença de solo arenoso no local. Os autores identificaram espécies típicas desta formação: murici anão do campo *Byrsonima intermedia*, pinha do cerrado *Duguetia furfuracea*, canelinha *Ocotea pulchela*, mandioqueiro *Schefflera vinosa*, taquara *Merostachys magellanica*, *Syagrus loefgrenii* e barbatimão *Stryphnodendron adstringens* dentre outras (Figuras 3.12 e 3.13).

Figura 3.12. Encrave de Savana arborizada (Cerrado denso), Barreiro Rico, Anhembi-SP. Foto: M. Pavão

Figura 3.13. Espécies típicas de Savana (Cerrado) a) barbatimão Stryphnodendron adstringens e b) pinha do cerrado Duguetia furfuracea, Barreiro Rico, Anhembi-SP. Foto: a) N.M Ivanauskas; b) F.A.R.D.P. Arzolla

Ecótono Savana / Floresta Estacional (SN)

Também ocorre na Estação Ecológica Barreiro Rico. É um tipo vegetacional florestal diferente da floresta característica da região. Sua fisionomia é de porte baixo e seus indivíduos de pequeno diâmetro e adensados, evidenciando restrições do meio ao desenvolvimento da vegetação florestal no local. Circunda o Encrave de Savana (SNc) – Figura 3.14.

Figura 3.14. Exemplar de copaíba Copaiffera langsdorfii em Ecótono Savana/ Floresta Estacional Semidecidual, Barreiro Rico, Anhembi-SP.

Foto: F.A.R.D.P. Arzolla

Formação Pioneira com Influência Fluvial (Pa)

A Vegetação pioneira sobre influência fluvial (Pa) apresenta o hábito predominante herbáceo e é composto por espécies aquáticas ou tolerantes ao encharcamento. Estão presentes alface d'àgua *Pistis stratioides*, orelha de macaco *Salvinia auriculata*, aguapé *Eicchornia crassipes*, erva de bicho *Polygonum* sp. e capins como braquiárias *Urochloa* spp., capituva *Echinochloa* sp. e *Paspalum repens*. Há também pequenos

cordões de solo consolidado em que predomina o componente arbustivo, havendo as espécies *Ipomoea carnea* e *Mimosa bimucronata*.

Está presente na represa, concentrando-se na região do Tanquã; em lagoas formadas pela cheia e inundação das margens pelo Rio Piracicaba; e em drenagens que desembocam no Tanquã e em outros pontos do reservatório, formando mantos verdes (Figuras 3.15 a 3.17).

Figura 3.15. Formação Pioneira sobre Influência Aluvial, Tanquã, Piracicaba-SP. Foto: M. Pavão

Figura 3.16. Formação Pioneira sobre Influência Aluvial, Tanquã, Piracicaba-SP. Foto: M. Pavão

Figura 3.17. Formação Pioneira sobre Influência Aluvial ocupando antigo fundo de vale, Tanquã, Piracicaba-SP.

Foto: M. Pavão

Área antrópica (AA)

Caracteriza-se pela grande antropização dos fundos de vale e sistemas de drenagem e a degradação da vegetação aluvial. A vegetação desses fundos de vale tem sido suprimida ao longo do tempo, mediante a expansão das atividades agropecuárias, principalmente a pecuária e a cultura da cana de açúcar com o histórico emprego do fogo no sistema produtivo, tanto na renovação de pastagens quanto dos canaviais. As florestas que outrora ocupavam esses vales foram progressivamente eliminadas e cada vez mais tem sido recuadas para as partes mais altas e declivosas das cabeceiras de drenagem.

3.3. Estudos sobre vegetação na área de estudo

Os estudos sobre vegetação na área de estudo concentram-se no principal remanescente da região: Barreiro Rico.

Assumpção et al (1982) identificaram em seu estudo florístico 158 espécies de angiospermas, sendo 76 arbóreas, 38 arbustivas, 21 trepadeiras, 16 herbáceas e sete epífitas, sendo as famílias mais ricas Myrtaceae (16 espécies), Euphorbiaceae, Fabaceae e Rubiaceae (11) e Rutaceae (sete espécies).

Cesar e Leitão-Filho (1990a) amostraram em seu estudo 1.200 indivíduos pelo método de quadrantes, encontrando 113 espécies arbóreas. No levantamento as famílias mais ricas em espécies foram Fabaceae (15 espécies), Euphorbiaceae (13), Myrtaceae (12), Lauraceae (10) e Rutaceae (sete). Dentre as espécies de maior valor de cobertura, Actinostemon estrellensis e Metrodorea nigra destacaram-se pela densidade relativa, Aspidosperam polyneuron, Esenbeckia leiocarpa, Pachystroma longifolium, Ocotea spixiana e Savia dyctiocarpa, pela dominância relativa, e Esenbeckia intermedia, Neomitrantehes obscura, Pilocarpus pauciflorus, Mouriri chamissoana, pela somatória dos valores.

Dentre as árvores que se destacaram na estrutura da floresta, Cesar e Leitão Filho (1990b) encontraram a guaraiúva Savia dictyocarpa, peroba-rosa Aspidosperma polyneuron, guarantã Esenbeckia leiocarpa, peroba Aspidosperma tomentosum,

canela branca Ocotea spixiana, Mouriri chamissoana, guaritá Astronium graveolens, Pachystroma ilicifolium, jatobá Hymenea courbaril e copaíba Copaiffera langsdorfii.

Em estudo sobre epífitas, Bataghin (2017) amostrou 1.148 epífitas vasculares pertencentes a 25 espécies, 15 gêneros e seis famílias na Estação Ecológica de Barreiro Rico. As Angiospermas foram representadas por 20 espécies e as samambaias por cinco espécies. As famílias com maior riqueza foram Orchidaceae (seis espécies), Bromeliaceae, Cactaceae e Polypodiaceae (cinco espécies cada), Araceae e Piperaceae (duas espécies cada). Polypodiaceae apresentou o maior número de indivíduos, seguida pelas famílias Cactaceae e Bromeliaceae. A família Orchidaceae, a mais rica da área de estudo, apresentou a quarta maior abundância. Os gêneros mais ricos em espécies foram *Tillandsia* e *Microgramma* (três cada), *Philodendron*, *Lepismium*, *Rhipsalis*, *Bulbophyllum*, *Peperomia* e *Pleopeltis* (duas cada).

3.4. Composição florística

No levantamento realizado na área proposta para a criação de Unidade de Conservação da Natureza foram registradas 425 espécies vegetais vasculares (Tabela 3.2).

Constam 46 espécies de Pteridophyta distribuídas em 13 famílias e 32 gêneros. As famílias mais ricas foram Polypodiaceae com 10 espécies, Dryopteridaceae com sete espécies e Aspleniaceae e Pteridaceae com cinco espécies cada. Os gêneros mais ricos foram *Asplenium* e *Microgramma* com cinco espécies cada, e *Pleopeltis* com três espécies.

Entre as Angiospermas foram registradas 379 espécies pertencentes a 74 famílias e 242 gêneros (Tabela 2). As famílias mais ricas foram Poaceae com 38 espécies, Fabaceae (31) 6, Rubiaceae (24), Bignoniaceae (21), Myrtaceae (18), Euphorbiaceae (16), Lauraceae (14), Asteraceae e Melastomataceae (13 espécies cada) e Rutaceae (10).

Os gêneros mais ricos foram *Miconia* com 10 espécies, seguidos de *Eugenia* com oito espécies, *Ocotea* com seis, *Piper* e *Psychotria* com cinco, *Solanum*, *Tillandsia* e

Erythroxylum com quatro, Croton, Cryptocarya, Inga, Myrcia, Myrsine e Trichilia, com três espécies cada.

Tabela 3.2. Espécies herbáceo-arbóreas registradas na área proposta para criação de Unidade de Conservação entre Barreiro Rico em Anhembi e Tanquã em Piracicaba. Hábito: Ab = arbusto; Ar = árvore; Bb = Bambu; Ev = erva; Fa = feto arborescente; Pa = palmeira; Tr = trepadeira. Espécie exótica (*). Fonte: 1 - splink/HVFB; 2 - bibliografia consultada; 3 - material coletado.

Coletado.		. .	11/11	_
Família	Espécie	Nome popular	Hábito	Fonte
PTERIDOPHYTA			_	
Anemiaceae	Anemia phyllitidis (L.) Sw.		Ev	1
Aspleniaceae	Asplenium auriculatum Sw.		Ev	1
Aspleniaceae	Asplenium auritum Sw.		Ev	1
Aspleniaceae	Asplenium balansae (Baker) Sylvestre		Ev	1
Aspleniaceae	Asplenium sellowianum (Hieron.) Hieron.		Ev	1
Aspleniaceae	Asplenium stuebelianum Hieron.		Ev	1
Athyriaceae	Diplazium plantaginifolium (L.) Urb.		Ev	1
Blechnaceae	Austroblechnum divergens (Kunze) Gasper & V.A.O. Dittrich		Ev	1
Blechnaceae	Lomaridium binervatum (Poir.) Gasper & V.A.O. Dittrich		Ev	1
Blechnaceae	Parablechnum cordatum (Desv.) Gasper & Sal		Ev	1
Blechnaceae	Salpichlaena volubilis (Kaulf.) J.Sm.		Ev	1
Cyatheaceae	Cyathea atrovirens (Langsd. & Fisch.) Domin	Samambaiaçu	Fa	3
Cyatheaceae	Cyathea phalerata Mart.	Samambaiaçu	Fa	1
Dryopteridaceae	Ctenitis submarginalis (Langsd. & Fisch.) Ching		Ev	1
Dryopteridaceae	Elaphoglossum macrophyllum (Mett. ex Kuhn) Christ		Ev	1
Dryopteridaceae	Lastreopsis acuta (Hook.) Tindale		Ev	1
Dryopteridaceae	Lastreopsis effusa (Sw.) Tindale		Ev	1
Dryopteridaceae	Olfersia cervina (L.) Kunze		Ev	1
Dryopteridaceae	Polystichum sp.		Ev	1
Dryopteridaceae	Rumohra adiantiformis (G.Forst.) Ching		Ev	1
Hymenophyllaceae	Didymoglossum hymenoides (Hedw.) Desv.		Ev	1
Hymenophyllaceae	Trichomanes cristatum Kaulf.		Ev	1
Hymenophyllaceae	Trichomanes polypodioides L.		Ev	1
Lindsaeaceae	Lindsaea lancea (L.) Bedd.		Ev	1
	Lindsaea quadrangularis Raddi		Ev	1
Marattiaceae	Danaea geniculata Raddi		Ev	1
Polypodiaceae	Campyloneuron sp.		Ev	1
Polypodiaceae	Microgramma lindbergii (Mett.) de la Sota		Ev	1
Polypodiaceae	Microgramma persicariifolia		Ev	2

	(Schrad.) C.Presl			
Polypodiaceae	Microgramma squamulosa (Kaulf.) de la Sota		Ev	1
Polypodiaceae	Microgramma vacciniifolia (Langsd. & Fisch.) Copel.		Ev	1
Polypodiaceae	Microgramma tecta (Kaulf.) Alston		Ev	2
Polypodiaceae	Pecluma plumula (Willd.) M.G.Price		Ev	1
Polypodiaceae	Phlebodium pseudoaureum (Cav.) Lellinger		Ev	1
Polypodiaceae	Pleopeltis hirsutissima (Raddi) de la Sota		Ev	1
Polypodiaceae	Pleopeltis minima (Bory) J. Prado & R.Y. Hirai		Ev	1
Polypodiaceae	Pleopeltis pleopeltifolia (Raddi) Alston		Ev	1
Polypodiaceae	Serpocaulon latipes (Langsd. & Fisch.) A.R.Sm.		Ev	1
Pteridaceae	Adiantopsis radiata (L.) Fée		Ev	1
Pteridaceae	Adiantum subcordatum Sw.		Ev	1
Pteridaceae	Doryopteris concolor (Langsd. & Fisch.) Kuhn		Ev	1
Pteridaceae	Pteris denticulata Sw. var. denticulata		Ev	1
Pteridaceae	Vittaria lineata (L.) Sm.		Ev	1
Salviniaceae	Salvinia auriculata Aubl.	orelha de macaco	Ev	3
Thelypteridaceae	Christella dentata (Forssk.) Brownsey & Jermy		Ev	1
Thelypteridaceae	Macrothelypteris torresiana (Gaudich.) Ching*		Ev	1
ANGIOSPERMAE	(1333,137,139)			
Acanthaceae	Aphelandra schottiana (Nees) Profice		Ab	1
Acanthaceae	Mendoncia velloziana Mart.		Tr	1
Amaranthaceae	Alternanthera aquatica (D.Parodi) Chodat		Ev	1
Amaranthaceae	Alternanthera tenella Colla		Ev	1
Anacardiaceae	Astronium graveolens Jacq.	guaritá	Ar	2
Anacardiaceae	Tapirira guianensis Aubl.		Ar	2
Annonaceae	Annona cacans Warm.	Araticum	Ar	2
Annonaceae	Duguetia furfuracea (A.StHil.) Saff.	pinha do cerrado	Ar	1
Annonaceae	Duguetia lanceolata A.StHil.	Pindaíba branca	Ar	1
Annonaceae	Guatteria australis A.StHil.		Ar	1
Annonaceae	Xylopia brasiliensis Spreng.	Guamirim, Pindaiba vermelha	Ar	1
Annonaceae	Xylopia emarginata Mart.		Ar	3
Apocynaceae	Aspidosperma polyneuron Müll.Arg.	peroba-rosa	Ar	1
Apocynaceae	Aspidosperma ramiflorum Müll.Arg.		Ar	2
Apocynaceae	Aspidosperma tomentosum Mart.	guatambú-do- cerrado,	Ar	2

pereiro-docampo

		campo		
Apocynaceae	Aspidosperma warmingii Müll.Arg.		Ar	1
Apocynaceae	Blepharodon bicuspidatum E.Fourn.		Tr	1
Apocynaceae	Condylocarpon isthmicum (Vell.) A.DC.		Tr	1
Apocynaceae	Forsteronia pubescens A.DC.		Tr	1
Apocynaceae	Oxypetalum appendiculatum Mart.		Tr	1
Apocynaceae	Prestonia coalita (Vell.) Woodson		Ab, Ar	1
Apocynaceae	Tabernaemontana catharinensis A.DC.		Ab, Ar	1
Apocynaceae	Temnadenia violacea (Vell.) Miers		Tr	1
Aquifoliaceae	Ilex cerasifolia Reissek		Ar	1
Araceae	Philodendron appendiculatum Nadruz & S.J.Mayo		Ev	2
Araceae	Philodendron bipinnatifidum Schott		Ev	2
Araceae	Pistia stratiotes L.		Ev	3
Araliaceae	Dendropanax cuneatus (DC.) Decne. & Planch.		Ar	2
Araliaceae	Schefflera morototoni (Aubl.) Maguire et al.		Ab	1
Araliaceae	Schefflera vinosa (Cham. & Schltdl.) Frodin & Fiaschi		Ab	1
Arecaceae	Acrocomia aculeata (Jacq.) Lodd. ex Mart.		Pa	2
Arecaceae	Geonoma brevispatha Barb.Rodr.		Pa	3
Arecaceae	Euterpe edulis Mart.		Pa	2
Arecaceae	Syagrus flexuosa (Mart.) Becc.		Pa	1
Arecaceae	Syagrus loefgrenii Glassman		Pa	1
Arecaceae	Syagrus petraea (Mart.) Becc.		Pa	1
Arecaceae	Syagrus romanzoffiana (Cham.) Glassman		Pa	2
Asteraceae	Adenostemma brasilianum (Pers.) Cass.		Ev	1
Asteraceae	Baccharis dracunculifolia DC.		Ab	1
Asteraceae	Calea clausseniana Baker		Ev	2
Asteraceae	Calea uniflora Less.		Ev	1
Asteraceae	Calea verticillata (Klatt) Pruski		Ab	1
Asteraceae	Chromolaena squalida (DC.) R.M.King & H.Rob.		Ab	1
Asteraceae	Chrysolaena obovata (Less.) Dematt.		Ab	1
Asteraceae	Moquiniastrum polymorphum (Less.) G. Sancho		Ab, Ar	1
Asteraceae	Moquiniastrum pulchrum (Cabrera) G.Sancho		Ab	1
Asteraceae	Piptocarpha macropoda (DC.) Baker		Ar	1
Asteraceae	Pterocaulon alopecuroides (Lam.) DC.		Ab	1
Asteraceae	Pterocaulon lanatum Kuntze		Ev, Ab	1

Asteraceae	Stevia riedelli Sch.Bip. ex Baker	Ar	1
Begoniaceae	Begonia fischeri Schrank	Ab	1
Bignoniaceae	Adenocalymma bracteatum (Cham.) DC.	Tr	1
Bignoniaceae	Adenocalymma paulistarum Bureau & K.Schum.	Tr	1
Bignoniaceae	Amphilophium bracteatum (Cham.) L.G.Lohmann	Tr	1
Bignoniaceae	Amphilophium magnoliifolium (Kunth) L.G.Lohmann	Tr	1
Bignoniaceae	Anemopaegma chamberlaynii (Sims) Bureau & K.Schum.	Tr	1
Bignoniaceae	Bignonia binata Thunb.	Tr	1
Bignoniaceae	Bignonia campanulata Cham.	Tr	1
Bignoniaceae	Cuspidaria pulchella (Cham.) K.Schum.	Tr	1
Bignoniaceae	Cuspidaria sceptrum (Cham.) L.G.Lohmann	Tr	1
Bignoniaceae	Dolichandra unguis-cati (L.) L.G.Lohmann	Tr	1
Bignoniaceae	Fridericia pubescens (L.) L.G.Lohmann	Tr	1
Bignoniaceae	Fridericia speciosa Mart.	Ab	1
Bignoniaceae	Handroanthus ochraceus (Cham.) Mattos	Ar	2
Bignoniaceae	Handroanthus vellosoi (Toledo) Mattos	Ar	1
Bignoniaceae	Jacaranda puberula Cham.	Ar	1
Bignoniaceae	Lundia obliqua Sond.	Tr	1
Bignoniaceae	Mansoa difficilis (Cham.) Bureau & K.Schum.	Tr	1
Bignoniaceae	Pyrostegia venusta (Ker Gawl.) Miers	Tr	1
Bignoniaceae	Stizophyllum perforatum (Cham.) Miers	Tr	1
Bignoniaceae	Tecoma stans (L.) Juss. ex Kunth*	Ar	1
Bignoniaceae	Zeyheria tuberculosa (Vell.) Bureau bolsa-de-pas ex Verl.	stor Ar	2
Boraginaceae	Cordia ecalyculata Vell. café-de-bugr	e Ar	1
Boraginaceae	Cordia sellowiana Cham.	Ar	1
Bromeliaceae	<i>Aechmea bromeliifolia</i> (Rudge) Baker	Ev	2
Bromeliaceae	Aechmea distichantha Lem.	Ev	2
Bromeliaceae	Tillandsia recurvata (L.) L.	Ev	2
Bromeliaceae	Tillandsia stricta Sol. ex Sims	Ev	2
Bromeliaceae	Tillandsia tricholepis Baker	Ev	2
Bromeliaceae	Tillandsia usneoides (L.) L.	Ev	2
Bromeliaceae	Vriesea bituminosa Wawra	Ev	2
Cabombaceae	Cabomba furcata Schult. & Schult.f.	Ev	1
Cactaceae	Epiphyllum phyllanthus (L.) Haw.	Ev	2
Cactaceae	Lepismium cruciforme (Vell.) Miq.	Ev	2

Cactaceae	Lepismium lumbricoides (Lem.) Barthlott		Ev	2
Cactaceae	Rhipsalis cereuscula Haw		Ev	2
Cactaceae	Rhipsalis floccosa Salm-Dyck ex Pfeiff.		Ev	1
Callophylaceae	Callophylum brasiliense Cambess.		Ar	3
Cannabaceae	Celtis brasiliensis (Gardner) Planch.		Ab, Ar	1
Cannabaceae	Celtis ehrenbergiana (Klotzsch)		Ab, Ar	1
Cannabaceae	Liebm. <i>Celtis iguanaea</i> (Jacq.) Sarg.		Ab, Ar	1
Cannabaceae	Trema micrantha (L.) Blume		Ab, Ar	1
Caricaceae	Jacaratia spinosa (Aubl.) A.DC.	jaracatiá	Ar	1
Celastraceae	Elachyptera festiva (Miers) A.C.Sm.	jaraoatia	Tr	1
Celastraceae	Hippocratea volubilis L.		Tr	1
Celastraceae	Maytenus gonoclada Mart.		Ab, Ar	1
Clusiaceae	Garcinia gardneriana (Planch. &		Ab, Ar	1
Oldoladdad	Triana) Zappi		710,711	•
Combretaceae	Terminalia glabrescens Mart.		Ab, Ar	1
Connaraceae	Bernardinia fluminensis (Gardner)		Ab,	1
Connorces	Planch.		Ar, Tr	1
Connaraceae	Rourea pseudospadicea G.Schellenb.		Ar, Tr	1
Convolvulaceae	Ipomoea carnea subsp. fistulosa (Mart. ex Choisy)		Ev	3
Cunoniaceae	D.F.Austin Lamanonia ternata Vell.		Ab, Ar	1
Cyperaceae	Cyperus giganteus Vahl		Ev	1
Cyperaceae	Scleria latifolia Sw.		Ev	1
Dilleniaceae	Davilla rugosa Poir.		Tr, Ab	1
Elaeocarpaceae	Sloanea lasiocoma K.Schum.		Ar	1
Elaeocarpaceae	Sloanea hirsuta (Schott) Planch. ex		Ar	1
·	Benth.			-
Erythroxylaceae	Erythroxylum buxus Peyr.		Ab, Av	1
Erythroxylaceae	Erythroxylum cuneifolium (Mart.) O.E.Schulz		Ab	1
Erythroxylaceae	Erythroxylum pelleterianum A.St Hil.		Ab, Ar	1
Erythroxylaceae	Erythroxylum suberosum A.StHil.		Ab, Ar	1
Euphorbiaceae	Actinostemon concepcionis (Chodat & Hassl.) Hochr.		Ab	1
Euphorbiaceae	Actinostemon concolor (Spreng.) Müll.Arg.		Ab, Ar	1
Euphorbiaceae	Actinostemon klotzschii (Didr.) Pax		Ab, Ar	1
Euphorbiaceae	Alchornea glandulosa Poepp. &		Ab, Ar	1
Euphorbiaceae	Endl. Alchornea triplinervia (Spreng.) Müll.Arg.		Ar	2
Euphorbiaceae	Aparisthmium cordatum (A.Juss.) Baill.	bolero	Ab, Ar	1
Euphorbiaceae	Croton floribundus Spreng.	capixingui, tapixingui	Ar	1

Euphorbiaceae	Croton glandulosus L.		Ev, Ab	1
Euphorbiaceae	Croton salutaris Casar.		Ar	3
Euphorbiaceae	Gymnanthes klotzschiana Müll.Arg.		Ar	2
Euphorbiaceae	Mabea fistulifera Mart.	canudeiro-de- pito, leiteir-do- mato	Ab, Ar	1
Euphorbiaceae	Maprounea brasiliensis A.StHil.		Ab, Ar	1
Euphorbiaceae	Maprounea guianensis Aubl.		Ar	1
Euphorbiaceae	Microstachys daphnoides (Mart. & Zucc.) Müll.Arg.		Ab	1
Euphorbiaceae	Microstachys serrulata (Mart. & Zucc.) Müll.Arg.		Ev, Ab	1
Euphorbiaceae	Pachystroma longifolium (Nees) I.M.Johnst.		Ar	2
Fabaceae	Anadenanthera colubrina (Vell.) Brenan		Ar	2
Fabaceae	Andira fraxinifolia Benth.		Ar	1
Fabaceae	Bauhinia forficata Link		Ar	2
Fabaceae	Cassia ferruginea (Schrad.) Schrad. ex DC.		Ar	1
Fabaceae	Centrolobium tomentosum Guillem. ex Benth.		Ar	2
Fabaceae	Chamaecrista desvauxii (Collad.) Killip		Ab, Ev	1
Fabaceae	Chamaecrista nictitans (L.) Moench		Ab, Ev	1
Fabaceae	Copaifera langsdorffii Desf.	copaíba, pau- d'óleo	Ar	1
Fabaceae	Cyclolobium brasiliense Benth.		Ar	1
Fabaceae	Dalbergia frutescens (Vell.) Britton		Tr, Ab	1
Fabaceae	Dioclea violacea Mart. ex Benth.	cipó-coronha	Tr	1
Fabaceae	Galactia decumbens (Benth.) Chodat & Hassl.		Ab, Ev	1
Fabaceae	Hymenaea courbaril L.	jatobá	Ar	1
Fabaceae	Inga laurina (Sw.) Willd.	ingá-mirim, ingá-chichi, ingá-cururu	Ar	1
Fabaceae	Inga striata Benth.	ingá-banana, ingá-caixão, ingá-facão	Ar	1
Fabaceae	<i>Inga vera</i> subsp. <i>affinis</i> (DC.) T.D.Penn.	ingá-banana	Ar	1
Fabaceae	Lonchocarpus cultratus (Vell.) A.M.G.Azevedo & H.C.Lima		Ar	2
Fabaceae	Machaerium nyctitans (Vell.) Benth.		Ar	2
Fabaceae	Machaerium scleroxylon Tul.		Ar	2
Fabaceae	Machaerium stipitatum Vogel		Ar	2
Fabaceae	Machaerium villosum Vogel		Ar	2
Fabaceae	Mimosa bimucronata (DC.) Kuntze		Ab, Ar	3
Fabaceae	Mimosa invisa Mart. ex Colla		Ab, Tr	1
Fabaceae	Myroxylon peruiferum L.f.		Ar	2

Fabaceae	Piptadenia gonoacantha (Mart.) J.F.Macbr.		Ar	2
Fabaceae	Senegalia martiusiana (Steud.) Seigler & Ebinger		Ab, Tr	1
Fabaceae	Senegalia polyphylla (DC.) Britton & Rose		Ab, Ar	1
Fabaceae	Senegalia tenuifolia (L.) Britton & Rose		Ab, Tr	1
Fabaceae	Senna rugosa (G.Don) H.S.Irwin & Barneby		Ab	1
Fabaceae	Stryphnodendron adstringens (Mart.) Coville	barbatimão	Ar	2
Fabaceae	Zollernia ilicifolia (Brongn.) Vogel	Pau-de-jantar	Ar	1
Gelsemiaceae	Mostuea muricata Sobral & Lc.Rossi		Ab	1
Hydrocharitaceae	Egeria densa Planch.		Ev	1
Lamiaceae	<i>Aegiphila integrifolia</i> (Jacq.) Moldenke		Ab, Ar	3
Lamiaceae	Aegiphila vitelliniflora Walp.		Ab, Ar, Tr	1
Lamiaceae	Ocimum campechianum Mill.		Ab, Ev	1
Lauraceae	Cryptocarya aschersoniana Mez	canela-batalha, canela- batalheira, batalheira	Ar	1
Lauraceae	Cryptocarya mandioccana Meisn.		Ar	1
Lauraceae	Cryptocarya moschata Nees &	canela-batalha	Ar	1
	Mart.			
Lauraceae	Mart. Cryptocarya saligna Mez		Ar	1
Lauraceae Lauraceae			Ar Ar	1 2
	Cryptocarya saligna Mez Endlicheria paniculata (Spreng.)			
Lauraceae	Cryptocarya saligna Mez Endlicheria paniculata (Spreng.) J.F.Macbr.	canela fedida	Ar	2
Lauraceae Lauraceae	Cryptocarya saligna Mez Endlicheria paniculata (Spreng.) J.F.Macbr. Licaria armeniaca (Nees) Kosterm.	canela fedida canelinha	Ar Ar	2
Lauraceae Lauraceae Lauraceae	Cryptocarya saligna Mez Endlicheria paniculata (Spreng.) J.F.Macbr. Licaria armeniaca (Nees) Kosterm. Nectandra grandiflora Nees Nectandra megapotamica (Spreng.)		Ar Ar Ar	2 1 1
Lauraceae Lauraceae Lauraceae Lauraceae	Cryptocarya saligna Mez Endlicheria paniculata (Spreng.) J.F.Macbr. Licaria armeniaca (Nees) Kosterm. Nectandra grandiflora Nees Nectandra megapotamica (Spreng.) Mez	canelinha	Ar Ar Ar Ar	2 1 1 1
Lauraceae Lauraceae Lauraceae Lauraceae Lauraceae	Cryptocarya saligna Mez Endlicheria paniculata (Spreng.) J.F.Macbr. Licaria armeniaca (Nees) Kosterm. Nectandra grandiflora Nees Nectandra megapotamica (Spreng.) Mez Ocotea catharinensis Mez	canelinha canela preta	Ar Ar Ar Ar	2111
Lauraceae Lauraceae Lauraceae Lauraceae Lauraceae Lauraceae	Cryptocarya saligna Mez Endlicheria paniculata (Spreng.) J.F.Macbr. Licaria armeniaca (Nees) Kosterm. Nectandra grandiflora Nees Nectandra megapotamica (Spreng.) Mez Ocotea catharinensis Mez Ocotea corymbosa (Meisn.) Mez	canelinha canela preta	Ar Ar Ar Ar Ar	2 1 1 1 1
Lauraceae Lauraceae Lauraceae Lauraceae Lauraceae Lauraceae Lauraceae	Cryptocarya saligna Mez Endlicheria paniculata (Spreng.) J.F.Macbr. Licaria armeniaca (Nees) Kosterm. Nectandra grandiflora Nees Nectandra megapotamica (Spreng.) Mez Ocotea catharinensis Mez Ocotea corymbosa (Meisn.) Mez Ocotea indecora (Schott) Mez	canelinha canela preta	Ar Ar Ar Ar Ar Ah, Ar	211111
Lauraceae Lauraceae Lauraceae Lauraceae Lauraceae Lauraceae Lauraceae Lauraceae	Cryptocarya saligna Mez Endlicheria paniculata (Spreng.) J.F.Macbr. Licaria armeniaca (Nees) Kosterm. Nectandra grandiflora Nees Nectandra megapotamica (Spreng.) Mez Ocotea catharinensis Mez Ocotea corymbosa (Meisn.) Mez Ocotea indecora (Schott) Mez Ocotea prolifera (Nees & Mart.) Mez Ocotea pulchella (Nees & Mart.)	canelinha canela preta canela de corvo canela-preta,	Ar Ar Ar Ar Ar Ab, Ar	2111111
Lauraceae	Cryptocarya saligna Mez Endlicheria paniculata (Spreng.) J.F.Macbr. Licaria armeniaca (Nees) Kosterm. Nectandra grandiflora Nees Nectandra megapotamica (Spreng.) Mez Ocotea catharinensis Mez Ocotea corymbosa (Meisn.) Mez Ocotea indecora (Schott) Mez Ocotea prolifera (Nees & Mart.) Mez Ocotea pulchella (Nees & Mart.) Mez	canelinha canela preta canela de corvo canela-preta,	Ar Ar Ar Ar Ar Ab, Ar Ar	2111111
Lauraceae	Cryptocarya saligna Mez Endlicheria paniculata (Spreng.) J.F.Macbr. Licaria armeniaca (Nees) Kosterm. Nectandra grandiflora Nees Nectandra megapotamica (Spreng.) Mez Ocotea catharinensis Mez Ocotea corymbosa (Meisn.) Mez Ocotea indecora (Schott) Mez Ocotea prolifera (Nees & Mart.) Mez Ocotea pulchella (Nees & Mart.) Mez Ocotea velutina (Nees) Rohwer Cariniana estrellensis (Raddi)	canelinha canela preta canela de corvo canela-preta,	Ar Ar Ar Ar Ar Ab, Ar Ar Ar	2111111
Lauraceae	Cryptocarya saligna Mez Endlicheria paniculata (Spreng.) J.F.Macbr. Licaria armeniaca (Nees) Kosterm. Nectandra grandiflora Nees Nectandra megapotamica (Spreng.) Mez Ocotea catharinensis Mez Ocotea corymbosa (Meisn.) Mez Ocotea indecora (Schott) Mez Ocotea prolifera (Nees & Mart.) Mez Ocotea pulchella (Nees & Mart.) Mez Ocotea velutina (Nees) Rohwer Cariniana estrellensis (Raddi) Kuntze	canelinha canela preta canela de corvo canela-preta,	Ar Ar Ar Ar Ab, Ar Ar Ar Ar	2 1 1 1 1 1 1 1 1 2
Lauraceae	Cryptocarya saligna Mez Endlicheria paniculata (Spreng.) J.F.Macbr. Licaria armeniaca (Nees) Kosterm. Nectandra grandiflora Nees Nectandra megapotamica (Spreng.) Mez Ocotea catharinensis Mez Ocotea corymbosa (Meisn.) Mez Ocotea indecora (Schott) Mez Ocotea prolifera (Nees & Mart.) Mez Ocotea pulchella (Nees & Mart.) Mez Ocotea velutina (Nees) Rohwer Cariniana estrellensis (Raddi) Kuntze Cariniana legalis (Mart.) Kuntze	canelinha canela preta canela de corvo canela-preta,	Ar Ar Ar Ab, Ar Ar Ar Ar Ar	2 1 1 1 1 1 1 1 1 2 2
Lauraceae	Cryptocarya saligna Mez Endlicheria paniculata (Spreng.) J.F.Macbr. Licaria armeniaca (Nees) Kosterm. Nectandra grandiflora Nees Nectandra megapotamica (Spreng.) Mez Ocotea catharinensis Mez Ocotea corymbosa (Meisn.) Mez Ocotea indecora (Schott) Mez Ocotea prolifera (Nees & Mart.) Mez Ocotea pulchella (Nees & Mart.) Mez Ocotea velutina (Nees) Rohwer Cariniana estrellensis (Raddi) Kuntze Cariniana legalis (Mart.) Kuntze Cuphea melvilla Lindl.	canelinha canela preta canela de corvo canela-preta,	Ar Ar Ar Ab, Ar	2 1 1 1 1 1 1 1 1 2 2 1
Lauraceae	Cryptocarya saligna Mez Endlicheria paniculata (Spreng.) J.F.Macbr. Licaria armeniaca (Nees) Kosterm. Nectandra grandiflora Nees Nectandra megapotamica (Spreng.) Mez Ocotea catharinensis Mez Ocotea corymbosa (Meisn.) Mez Ocotea indecora (Schott) Mez Ocotea prolifera (Nees & Mart.) Mez Ocotea pulchella (Nees & Mart.) Mez Ocotea velutina (Nees) Rohwer Cariniana estrellensis (Raddi) Kuntze Cariniana legalis (Mart.) Kuntze Cuphea melvilla Lindl. Magnolia ovata (A.StHil.) Spreng. Diplopterys pubipetala (A.Juss.)	canelinha canela preta canela de corvo canela-preta,	Ar	2 1 1 1 1 1 1 1 2 2 1 2
Lauraceae Magnoliaceae Malpighiaceae	Cryptocarya saligna Mez Endlicheria paniculata (Spreng.) J.F.Macbr. Licaria armeniaca (Nees) Kosterm. Nectandra grandiflora Nees Nectandra megapotamica (Spreng.) Mez Ocotea catharinensis Mez Ocotea corymbosa (Meisn.) Mez Ocotea indecora (Schott) Mez Ocotea prolifera (Nees & Mart.) Mez Ocotea pulchella (Nees & Mart.) Mez Ocotea velutina (Nees) Rohwer Cariniana estrellensis (Raddi) Kuntze Cariniana legalis (Mart.) Kuntze Cuphea melvilla Lindl. Magnolia ovata (A.StHil.) Spreng. Diplopterys pubipetala (A.Juss.) W.R.Anderson & C.C.Davis	canelinha canela preta canela de corvo canela-preta,	Ar Tr	2 1 1 1 1 1 1 1 2 2 1

Malpighiaceae	Niedenzuella acutifolia (Cav.) W.R.Anderson	Tr	1
Malpighiaceae	Niedenzuella multiglandulosa (A.Juss.) W.R.Anderson	Tr	1
Malpighiaceae	Peixotoa parviflora A.Juss.	Ab, Tr	1
Malpighiaceae	Tetrapterys phlomoides (Spreng.)	Tr	1
1 3	Nied.		
Malvaceae	Bastardiopsis densiflora (Hook. & Arn.) Hassl.	Ar	2
Malvaceae	Ceiba speciosa (A.StHil.) Ravenna	Ar	2
Malvaceae	Guazuma ulmifolia Lam.	Ar	2
Malvaceae	Luehea divaricata Mart. & Zucc.	Ar	2
Malvaceae	Pavonia sepium A.StHil.	Ab	1
Melastomataceae	Leandra hirta Raddi	Ab	1
Melastomataceae	Miconia albicans (Sw.) Triana	Ab, Ar	1
Melastomataceae	Miconia brunnea DC.	Ar	1
Melastomataceae	Miconia chamissois Naudin	Ab	1
Melastomataceae	Miconia latecrenata (DC.) Naudin	Ab, Ar	1
Melastomataceae	Miconia lepidota DC.	Ar	1
Melastomataceae	Miconia nervosa (Sm.) Triana	Ab, Ar	1
Melastomataceae	Miconia paucidens DC.	Ab, Ar	1
Melastomataceae	Miconia speciosa (A.StHil. &	Ar	1
	Naudin) Naud		
Melastomataceae	Miconia stenostachya DC.	Ab	1
Melastomataceae	Miconia tristis Spring	Ab, Ar	1
Melastomataceae	Mouriri chamissoana Cogn.	Ar	2
Melastomataceae	Mouriri glazioviana Cogn.	Ar	1
Meliaceae	Cabralea canjerana (Vell.) Mart.	Ar	2
Meliaceae	Cedrela fissilis Vell.	Ar	2
Meliaceae	Guarea guidonia (L.) Sleumer	Ar	2
Meliaceae	Guarea macrophylla Vahl	Ar	2
Meliaceae	Trichilia catigua A.Juss.	Ar	2
Meliaceae	Trichilia clausseni C.DC.	Ar	2
Meliaceae	Trichilia pallida Sw.	Ar	1
Moraceae	Ficus guaranitica Chodat	Ar	1
Moraceae	Sorocea bonplandii (Baill.)	Ar	2
N.A	W.C.Burger et al.	A.I. A	
Myrtaceae	Blepharocalyx salicifolius (Kunth)	Ab, Ar	1
Myrtaceae	O.Berg Calyptranthes clusiifolia O.Berg	Ar	1
Myrtaceae	Eugenia aurata O.Berg	Ab, Ar	1
Myrtaceae	Eugenia hiemalis Cambess.	Ab, Ar	1
Myrtaceae	Eugenia ligustrina (Sw.) Willd.	Ar	1
Myrtaceae	Eugenia pluriflora DC.	Ar	1
Myrtaceae	Eugenia pyriformis Cambess.	Ab, Ar	1
Myrtaceae	Eugenia speciosa Cambess.	Ar	1
Myrtaceae	Eugenia sphenophylla O.Berg	Ab, Ar	1
Myrtaceae	Eugenia sulcata Spring ex Mart.	Α	1
,			•

Myrtaceae	Myrcia splendens (Sw.) DC.		Ar	1
Myrtaceae	Myrcia guianensis (Aubl.) DC.		Ar	1
Myrtaceae	Myrcia hebepetala DC.		Ar	1
Myrtaceae	Myrcia multiflora (Lam.) DC.		Ar	1
Myrtaceae	Myrcia subcordata DC.		Ab, Ar	1
Myrtaceae	Myrcia venulosa DC.		Ar	1
Myrtaceae	Myrciaria floribunda (H.West ex Willd.) O.Berg		Ar	1
Myrtaceae	Neomitranthes gracilis (Burret) N.Silveira		Ar	1
Nyctaginaceae	Guapira opposita (Vell.) Reitz		Ab, Ar	1
Nymphaeaceae	Nymphaea rubra Roxb. ex Andrews		Ev	1
Ochnaceae	Ouratea sp.		Ab, Ar	3
Opiliaceae	Agonandra excelsa Griseb.		Ab, Ar	1
Orchidaceae	Bletia catenulata Ruiz & Pav.		Ev	1
Orchidaceae	Bulbophyllum epiphytum Barb.Rodr.		Ev	2
Orchidaceae	Bulbophyllum exaltatum Lindl.		Ev	1
Orchidaceae	Catasetum fimbriatum (C.Morren) Lindl.		Ev	1
Orchidaceae	Epidendrum secundum Jacq.		Ev	1
Orchidaceae	Gomesa lietzei (Regel) M.W.Chase & N.H.Williams		Ev	1
Orchidaceae	Octomeria crassifolia Lindl.		Ev	1
Orchidaceae	Rodriguezia decora (Lem.) Rchb.f.		Ev	1
Orchidaceae	Ornithocephalus myrticola Lindl.		Ev	2
Orchidaceae	Sarcoglottis acaulis (Sm.) Schltr.		Ev	1
Peraceae	Pera glabrata (Schott) Poepp. ex Baill.		Ab, Ar	1
Phyllanthaceae	Savia dictyocarpa Müll.Arg.		Ar	2
Phytolaccaceae	Gallesia integrifolia (Spreng.) Harms		Ar	2
Phytolaccaceae	Petiveria alliacea L.*	guiné	Ev	1
Phytolaccaceae	Seguieria langsdorffii Moq.		Ar	2
Piperaceae	Peperomia rotundifolia (L.) Kunth		Ev	2
Piperaceae	Peperomia tetraphylla (G.Forst.) Hook. & Arn.		Ev	1
Piperaceae	Piper amalago L.		Ab	1
Piperaceae	Piper anisum (Spreng.) Angely		Ar	1
Piperaceae	Piper arboreum Aubl.		Ar	1
Piperaceae	Piper corcovadensis (Miq.) C.DC.		Ar	1
Piperaceae	Piper miquelianum C.DC.		Ab	1
Poaceae	Andropogon bicornis L.		Ev	1
Poaceae	Andropogon selloanus (Hack.) Hack.		Ev	1
Poaceae	Aristida circinalis Lindm.		Ev	1
Poaceae	Axonopus capillaris (Lam.) Chase		Ev	1
Poaceae	Axonopus pressus (Nees ex Steud.) Parodi		Ev	1
Poaceae	Digitaria insularis (L.) Fedde		Ev	1

Poaceae	Echinochloa crusgalli (L.) P.Beauv.*		Ev	1
Poaceae	Eragrostis bahiensis Schrad. ex Schult.		Ev	1
Poaceae	Eragrostis ciliaris (L.) R.Br.*		Ev	1
Poaceae	Eriochrysis cayennensis P. Beauv.		Ev	1
Poaceae	Eustachys distichophylla (Lag.) Nees		Ev	1
Poaceae	Homolepis villaricensis (Mez) Zuloaga & Soderstr.		Ev	1
Poaceae	Hymenachne amplexicaulis (Rudge) Nees		Ev	1
Poaceae	Lasiacis ligulata Hitchc. & Chase		Ev	1
Poaceae	Megathyrsus maximus (Jacq.) B.K.Simon & S.W.L.Jacobs*		Ev	1
Poaceae	Melinis repens (Willd.) Zizka*		Ev	1
Poaceae	Merostachys magellanica Send.		Bb	1
Poaceae	Olyra latifolia L.		Ev	1
Poaceae	Panicum millegrana Poir.		Ev	1
Poaceae	Panicum repens L.*		Ev	1
Poaceae	Panicum sellowii Nees		Ev	1
Poaceae	Parodiolyra micrantha (Kunth) Davidse & Zuloaga		Ev	1
Poaceae	Paspalum conjugatum P.J.Bergius		Ev	1
Poaceae	Paspalum conspersum Schrad.		Ev	1
Poaceae	Paspalum repens P.J.Bergius		Ev	1
Poaceae	Paspalum urvillei Steud.		Ev	1
Poaceae	Pharus lappulaceus Aubl.		Ev	1
Poaceae	Saccharum asperum (Nees) Steud.		Ev	1
Poaceae	Saccharum villosum Steud.		Ev	1
Poaceae	Sacciolepis vilvoides (Trin.) Chase		Ev	1
Poaceae	Setaria parviflora (Poir.) Kerguélen		Ev	1
Poaceae	Sporobolus indicus (L.) R.Br.		Ev	1
Poaceae	Steinchisma decipiens (Nees ex Trin.) W.V.Br.		Ev	1
Poaceae	Steinchisma laxum (Sw.) Zuloaga		Ev	1
Poaceae	Streptochaeta spicata Schrad. ex Nees		Ev	1
Poaceae	Urochloa brizantha (Hochst. ex A. Rich.) R.D.Webster*	braquiária	Ev	1
Poaceae	Urochloa humidicola (Rendle) Morrone & Zuloaga*		Ev	1
Poaceae	Urochloa plantaginea (Link) R.D.Webster*		Ev	1
Polygalaceae	Diclidanthera laurifolia Mart.		Ab, Ar, Tr	1
Polygonaceae	Coccoloba glaziovii Lindau		Ab, Ar	1
Polygonaceae	Polygonum ferrugineum Wedd.		Ev	1
Polygonaceae	Polygonum lapathifolium L.		Ev	3
Pontederiaceae	Eicchornia crassipes (Mart.) Solms		Ev	3
Pontederiaceae	Heteranthera reniformis Ruiz & Pav.		Ev	1

Primulaceae	Myrsine gardneriana A.DC.		Ab, Ar	1
Primulaceae	Myrsine lancifolia Mart.		Ab	1
Primulaceae	Myrsine squarrosa (Mez) M.F.Freitas & KinGouv.		Ab	1
Proteaceae	Roupala montana var. brasiliensis (Klotzsch) K.S.Edwards		Ab, Ar	1
Rhamnaceae	Colubrina glandulosa Perkins		Ar	1
Rhamnaceae	Gouania latifolia Reissek		Tr	1
Rhamnaceae	Rhamnidium elaeocarpum Reissek		Ar	1
Rubiaceae	Amaioua intermedia Mart. ex Schult. & Schult.f.		Ar	1
Rubiaceae	Chomelia bella (Standl.) Steyerm.		Ab, Ar	1
Rubiaceae	Coffea arabica L.*		Ab	2
Rubiaceae	Cordiera concolor (Cham.) Kuntze		Ar	1
Rubiaceae	Coussarea contracta (Walp.) Müll.Arg.		Ab, Ar	1
Rubiaceae	Coutarea hexandra (Jacq.) K.Schum.		Ab, Ar	1
Rubiaceae	Faramea hyacinthina Mart.		Ab, Ar	1
Rubiaceae	Faramea stipulacea (Cham. & Schltdl.) DC.		Ar	1
Rubiaceae	Hexasepalum teres (Walter) J.H. Kirkbr.		Ev, Ab	1
Rubiaceae	<i>Ixora gardneriana</i> Benth.		Ab	1
Rubiaceae	Ixora venulosa Benth.		Ab, Ar	1
Rubiaceae	Manettia cordifolia Mart.		Tr	1
Rubiaceae	Margaritopsis cephalantha (Müll.Arg.) C.M.Taylor		Ab	1
Rubiaceae	Palicourea rigida Kunth		Ab	1
Rubiaceae	Psychotria deflexa DC.		Ab	1
Rubiaceae	Psychotria gracilenta Müll.Arg.		Ab	1
Rubiaceae	Psychotria hoffmannseggiana (Willd. ex Schult.) Müll.Arg.		Ab	1
Rubiaceae	Psychotria subtriflora Müll.Arg.		Ab	1
Rubiaceae	Psychotria vellosiana Benth.		Ab	1
Rubiaceae	Psychotria warmingii Müll.Arg.		Ab	1
Rubiaceae	Randia armata (Sw.) DC.		Ab,	1
5	5 / / / / / / / /)		Ar, Tr	_
Rubiaceae	Rudgea jasminoides (Cham.) Müll.Arg.	jasmin-do-mato, café-do-mato, casca d'anta, pasto d'anta, pimenteira-de- folha-larga	Ab, Ar	2
Rubiaceae	Rudgea triflora Benth.		Ab, Ar	1
Rubiaceae	Tocoyena formosa (Cham. & Schltdl.) K.Schum.		Ab	1
Rutaceae	Dictyoloma vandellianum A.Juss.		Ar	1
Rutaceae	Esenbeckia febrifuga (A.StHil.) A. Juss. ex Mart.		Ar	1
Rutaceae	Esenbeckia grandiflora Mart. subsp.		Ab, Ar	1

	Grandiflora			
Rutaceae	Esenbeckia leiocarpa Engl.	guarantã	Ar	1
Rutaceae	Galipea jasminiflora (A.StHil.) Engl.	carrapateiro, três-folhas-do- mato	Ar	1
Rutaceae	Helietta apiculata Benth.	amarelinho, canela-de- veado-, osso- de-burro	Ar	1
Rutaceae	Metrodorea nigra A.StHil.	chupa-ferro, pitaguará	Ar	1
Rutaceae	Pilocarpus pauciflorus A.StHil.	. •	Ar	1
Rutaceae	Zanthoxylum caribaeum Lam.	mamiqueira- fedorenta	Ar	1
Rutaceae	Zanthoxylum rhoifolium Lam.	mamica-de- porca	Ar	1
Salicaceae	Casearia gossypiosperma Briq.		Ar	2
Salicaceae	Casearia obliqua Spreng.		Ab, Ar	1
Salicaceae	Casearia sylvestris Sw.	guaçatonga	Ab, Ar	1
Salicaceae	Prockia crucis P.Browne ex L.		Ab, Ar	1
Sapindaceae	Allophylus edulis (A.StHil. et al.) Hieron. ex Niederl.		Ab, Ar	1
Sapindaceae	Cupania tenuivalvis Radlk.	camboatá	Ar	1
Sapindaceae	Cupania vernalis Cambess.	rabo-de-bugio, arc-de-barril	Ar	1
Sapindaceae	Diatenopteryx sorbifolia Radlk.		Ar	2
Sapindaceae	Matayba elaeagnoides Radlk.	mataiba	Ab, Ar	1
Sapindaceae	Paullinia meliifolia Juss.	cipó-timboeira	Tr	1
Sapindaceae	Serjania laruotteana Cambess.	cipó-uva	Tr	1
Sapindaceae	Serjania paradoxa Radlk.			1
Sapindaceae	Serjania reticulata Cambess.	cipó-timbó, timbó-vermelho	Tr	1
Sapotaceae	Chrysophyllum gonocarpum (Mart. & Eichler ex Miq.) Engl.		Ar	2
Siparunaceae	Siparuna brasiliensis (Spreng.) A.DC.		Ar	2
Siparunaceae	Siparuna guianensis Aubl.	capitiu	Ab, Ar	1
Smilacaceae	Smilax polyantha Griseb.		Tr	1
Solanaceae	Acnistus arborescens (L.) Schltdl.		Ab	1
Solanaceae	Schwenckia americana Rooyen ex L.		Ev	1
Solanaceae	Solanum didymum Dunal		Ab	1
Solanaceae	Solanum granulosoleprosum Dunal		Ar	1
Solanaceae	Solanum megalochiton Mart.		Ab	2
Solanaceae	Solanum swartzianum Roem. & Schult.		Ab	2
Solanaceae	Vassobia breviflora (Sendtn.) Hunz.		Ab	1
Styraceae	Styrax pohli A.DC.		Ab, Ar	3
Symplocaceae	Symplocos pubescens Klotzsch ex Benth.		Ab, Ar	1
Trigoniaceae	Trigonia nivea Cambess.		Ab, Tr	1

Urticaceae	Cecropia glaziovii Snethl.		Ar	2
Urticaceae	Cecropia hololeuca Miq.	embaúba branca	Ar	2
Urticaceae	Cecropia pachystachya Trécul	embaúba	Ar	1
Urticaceae	Urera caracasana (Jacq.) Griseb.	urtiga	Ab	1
Verbenaceae	Aloysia virgata (Ruiz & Pav.) Juss.		Ar	2
Verbenaceae	Petrea volubilis L.		Tr	2
Vochysiaceae	Qualea multiflora subsp. pubescens Mart.	Pau-terra	Ab, Ar	2
Vochysiaceae	Vochysia tucanorum Mart.	pau-de-tucano	Ar	2

Espécies Ameaçadas da Flora/ Endêmicas

Foram encontradas 15 espécies em risco de extinção nas categorias em perigo ou vulnerável, e somente uma como presumivelmente extinta. Na lista de São Paulo, cinco espécies se encontram na categoria Em Perigo (*Aristida circinalis*, *Esenbeckia leiocarpa*, *Neomitranthes gracilis*, *Rourea pseudospadicea e Stevia riedelli*) e oito na categoria Vulnerável (*Alternanthera aquatica*, *Cariniana legalis*, *Cedrela fissilis*, *Euterpe edulis*, *Heteranthera reniformis*, *Mostuea muricata*, *Ocotea catharinensis* e *Zeyheria tuberculosa*).

Na lista brasileira, quatro constam como Em Perigo (*Cedrela fissilis*, *Neomitranthes gracilis*, *Rourea pseudospadicea e Stevia riedelli*) e seis como Vulnerável (*Cariniana legalis*, *Esenbeckia leiocarpa*, *Euterpe edulis*, *Mostuea muricata*, *Ocotea catharinensis* e *Zeyheria tuberculosa*). E na lista da IUCN, duas constam Em Perigo (*Aspidosperma polyneuron* e *Cedrela fissilis*) e cinco como Vulnerável (*Cariniana legalis*, *Esenbeckia leiocarpa*, *Ocotea catharinensis*, *Machaerium villosum* e *Zeyheria tuberculosa*) – Tabela 3.3.

Tabela 3.3. Espécies ameaçadas de extinção registradas na área proposta para a criação de unidade de conservação entre Barreiro Rico em Anhembi e Tanquã em Piracicaba. Risco de extinção das espécies em escala estadual - SP (São Paulo, 2016), nacional – BR (Martinelli e Moraes, 2013 e Brasil, 2014) e global - GL (IUCN, 2018). Categorias de risco de extinção: EX – Presumivelmente extinta; EN – em perigo; VU– vulnerável.

Família	Espécie	Nome popular	SP	BR	GL
Amaranthace	Alternanthera aquatica (D.Parodi)	роријај	VU		
ae	Chodat				
Apocynaceae	Aspidosperma polyneuron Müll.Arg.	Peroba-rosa			EN
Arecaceae	Euterpe edulis Mart.	Palmito- jussara	VU	VU	
Asteraceae	Stevia riedelli Sch.Bip. ex Baker		ΕN	EN	
Bignoniaceae	Zeyheria tuberculosa (Vell.) Bureau ex Verl.		VU	VU	VU
Connaraceae	Rourea pseudospadicea G.Schellenb.		EN	EN	
Fabaceae	Machaerium villosum Vogel				VU
Gelsemiacea e	Mostuea muricata Sobral & Lc.Rossi		VU	VU	
Lauraceae	Ocotea catharinensis Mez	Canela-preta	VU	VU	VU
Lecythidacea e	Cariniana legalis (Mart.) Kuntze	Jequitibá- rosa	VU	VU	VU
Meliaceae	Cedrela fissilis Vell.	Cedro rosa	VU	EN	EN
Myrtaceae	Neomitranthes gracilis (Burret) N.Silveira		EN	EN	
Poaceae	Aristida circinalis Lindm.		ΕN		
Pontederiace ae	Heteranthera reniformis Ruiz & Pav.		VU		
Rutaceae	Esenbeckia leiocarpa Engl.	Guarantã	EN	VU	VU

Espécies exóticas/ invasoras/ com potencial de invasão

Foram encontradas 15 espécies exóticas, todas invasoras. Algumas delas estão relacionadas ao contato dos remanescentes florestais com as pastagens como braquiárias *Urochloa brizantha*, *U. humidicola* e *U. plantaginea*, capim gordura *Melinis minutiflora* e ipê de jardim *Tecoma stans*, ou áreas agrícolas, como o cafeeiro *Coffea arabica*. Outras são aquáticas como os capins, tolerantes ao encharcamento, e estão presentes às margens do reservatório, em drenagens que desaguam no reservatório ou em lagoas formadas na área do Tanquã (Tabela 3.4).

Tabela 3.4. Espécies exóticas registradas na área proposta para a criação de unidade de conservação entre Barreiro Rico em Anhembi e Tanquã em Piracicaba. Hábito (H): Av – árvore; Ab – arbusto; Ev – erva; Tr – Trepadeira; Ep – Epífita; Pa – palmeira.

		Nome	
Família	Espécie	popular	Н
Bignoniaceae	Tecoma stans (L.) Juss. ex Kunth		Av
Commelinaceae	Tradescantia zebrina Heynh. ex Bosse		Er
Nymphaeaceae	Nymphaea rubra Roxb. ex Andrews		Er
Orchidaceae	Zeuxine strateumatica (L.) Schltr.		Er
Phytolaccaceae	Petiveria alliacea L.	guiné	Er
Poaceae	Echinochloa crusgalli (L.) P.Beauv.		Er
Poaceae	Eragrostis ciliaris (L.) R.Br.		Er
Poaceae	Megathyrsus maximus (Jacq.) B.K.Simon &		Er
1 daceae	S.W.L.Jacobs		
Poaceae	Melinis repens (Willd.) Zizka		Er
Poaceae	Panicum repens L.		Er
Poaceae	Urochloa brizantha (Hochst. ex A. Rich.)	braquiária	Er
1 daccac	R.D.Webster		
Poaceae	Urochloa humidicola (Rendle) Morrone &		
1 daccac	Zuloaga		Er
Poaceae	Urochloa plantaginea (Link) R.D.Webster		Er
Rubiaceae	Coffea arabica L.	café	Ab
Thelypteridaceae	Macrothelypteris torresiana (Gaudich.) Ching		

3.5. Principais vetores de pressão

Devido a uma intensa ocupação do território por atividades agropecuárias, a ação antrópica ao longo de décadas converteu a Floresta Estacional Semidecidual em áreas de agricultura (cana-de-açúcar) e pecuária (bovinocultura).

Por iniciativa particular, alguns remanescentes foram mantidos principalmente na região do Barreiro Rico, em Anhembi, e por iniciativa governamental, em Ibicatu, em Piracicaba, com a criação da reserva florestal em 1958, e posteriormente em 1987, a Estação Ecológica.

Esses blocos de remanescentes encontram-se praticamente isolados. As áreas dos fundos de vale, em que se encontram as Áreas de Preservação Permanente – APPs e que poderiam exercer a conexão entre esses principais blocos, encontram-se com grande antropização e degradação da vegetação aluvial.

O histórico emprego do fogo no sistema produtivo tanto na renovação de pastagens quanto dos canaviais fez com que as florestas que outrora ocupavam esses vales fossem progressivamente eliminadas e cada vez mais recuadas para as partes mais altas e declivosas das cabeceiras de drenagem, isolando-se uma das outras. Incêndios também atingiram os principais remanescentes da região do Barreiro Rico.

3.6. Justificativas para a criação de Unidade de Conservação

Diversas razões apontam para a grande importância Na área proposta para a criação de uma unidade de conservação entre Barreiro Rico em Anhembi e Tanquã em Piracicaba, dentre elas:

- a existência de alguns remanescentes de significativa dimensão na região do Barreiro Rico, município de Anhembi;
- a presença de fitofisionomias de ocorrência bastante restrita e altamente ameaçadas no Estado de São Paulo como a Floresta Estacional Semidecidual, a Floresta Estacional Decidual e a Savana (Cerrado), pela histórica conversão em outros usos, como a agricultura, a silvicultura e a pecuária;
- a ocorrência de espécies ameaçadas de extinção e de distribuição restrita em nosso Estado;
- a necessidade de aumentar a proteção da fauna e flora na área de estudo, uma vez que o desmatamento, as queimadas/ incêndios florestais e a supressão de habitats apresentam-se como grandes ameaças para a biodiversidade na região.
- o restabelecimento das conexões entre os remanescentes, mediante ações de estímulo à recomposição das áreas de preservação permanente.

A definição dos limites da Unidade de Conservação dependerá do cruzamento entre os vários estudos em desenvolvimento e deverá assegurar a proteção dos remanescentes florestais e savânicos existentes, as planícies inundáveis do sistema Tanquã, as áreas de preservação permanente e os habitats para a fauna.

4. FAUNA

4.1. Introdução

Vertebrados constituem o grupo de animais melhor conhecido, pois é estimado que a maior parte das espécies já tenha sido descrita e, principalmente, porque estão disponíveis muitas informações sobre sua ecologia e comportamento. Assim, sabemos que os vertebrados desempenham diversos papéis dentro dos ecossistemas, contribuindo para a manutenção de sua estrutura e funcionamento ao atuarem como predadores, decompositores, polinizadores e dispersores de sementes. As espécies herbívoras consomem porção considerável da biomassa vegetal e na maioria dos ecossistemas os predadores no topo da cadeia alimentar são vertebrados. Além disso, certas espécies alteram tanto as características físicas de seus habitats que são consideradas engenheiras ecossistêmicas, ao pisotear e arrancar a vegetação, escavar o solo, perfurar a madeira, construir tocas, abrigos, ninhos, etc. (Wright e Jones, 2006).

Adicionalmente, essa relevante participação dos vertebrados nos processos ecológicos se traduz em diversos serviços ecossistêmicos para os seres humanos, ex. produção de alimentos e controle de pragas agrícolas (Gascon et al., 2015). Em menor grau, vertebrados estão associados também, a desserviços ecossistêmicos, por serem hospedeiros de parasitas e patógenos que atingem humanos ou por consumirem cultivos (Shackleton et al., 2016).

Devido a tais fatos, a avaliação das comunidades de vertebrados constitui um instrumento para inferir a qualidade ambiental de uma dada paisagem e por isso, neste trabalho, foi aplicada para a região da confluência dos rios Piracicaba e Tietê.

4.2. Área de Estudo e Metodologia

A área de estudo está na zona de contato entre os biomas Mata Atlântica e Cerrado, e antes da extensa perturbação antrópica apresentava uma rica biodiversidade.

A planície de inundação do Tanquã (Figuras 4.1 e 4.2) no rio Piracicaba é local de grande heterogeneidade ambiental constituído por lagoas marginais sazonalmente conectadas ao curso principal, canais secundários, bancos de sedimentos e vegetação herbácea-arbustiva de várzea, emersa ou flutuante. Após a instalação da barragem de Barra Bonita no rio Tietê, a área sujeita a inundação foi ampliada aumentando a retenção da água durante a estação seca, devido às necessidades de produção de

energia elétrica e de manutenção de operação da hidrovia Tietê-Paraná (Petesse et al., 2007). Com isso a flutuação sazonal na profundidade da água foi alterada, com os meses de menor precipitação podendo apresentar maior nível de água do que os meses da estação chuvosa, nos quais ocorre descarga pelas comportas da represa (Magalhães, 1999; Robinson e Pizo, 2017).

As outras localidades de destaque na área de estudo são quatro remanescentes de Floresta Estacional Semidecidual, que juntos somam perto de 2.500 ha, inseridos numa matriz em que predominam pastagens e canaviais (Figuras 4.1 e 4.3). Três desses fragmentos situam-se na antiga fazenda Barreiro Rico, que ao longo do século XX e início do século XXI foi sucessivamente desmembrada em porções menores. Atualmente, Barreiro Rico é o nome de uma destas fazendas "descendentes" da original e um bairro rural do município de Piracicaba. Ao mencionarmos Barreiro Rico no texto estamos nos referindo à localidade original e englobando a área indicada na Figura 4.1.

As informações sobre os vertebrados foram obtidas por meio de trabalho de campo (11/01/2000 a 17/11/2002; 15/10/2016 e 23 a 26/06/2018; Figura 4.4), revisão bibliográfica e consulta aos bancos de dados *on line* de coleções científicas, Species Link (2018), Sistema de Informação sobre a Biodiversidade Brasileira - SiBBr (2018) e VertNet (2018), e do banco de imagens e gravações de aves do site WikiAves (2018). O Dr. Osvaldo Takeshi Oyakawa, do Museu de Zoologia da USP, gentilmente cedeu informações sobre os peixes da região depositados nesta coleção.

A Fazenda Bacury é a propriedade que apresenta a maior gleba dos quatro remanescentes florestais e tem sido muito visitada por observadores de aves recentemente. Vários desses observadores de aves inserem suas fotografias e gravações de áudio no site WikiAves, o que tem contribuído para o monitoramento da avifauna local. Geralmente, neste material, consta como localidade de registro apenas o município de Anhembi. Adicionalmente, verificamos as fotografias e vídeos de animais inseridos pelos proprietários no sítio da fazenda na internet.

Também, foram considerados os registros de vertebrados obtidos nas áreas diretamente afetada e de influência direta das potenciais obras de barragem no rio Piracicaba, apresentados no Estudo de Impacto Ambiental "Aproveitamento Múltiplo Santa Maria da Serra" (d'Horta et al., 2013; Rivero et al., 2013).

As nomenclaturas utilizadas foram as propostas no Catálogo Taxonômico da Fauna Brasileira (Menezes et al., 2018; Percequillo e Gregorin, 2018; Piacentini et al., 2018) e

nas listas de espécies de anfíbios e répteis da Sociedade Brasileira de Herpetologia (Segalla et al., 2016; Costa e Bérnils, 2018). Para o enquadramento das espécies em categorias de ameaça de extinção foram consultadas as últimas versões disponíveis das listas do estado de São Paulo, brasileira e global da IUCN (MMA, 2014; IUCN, 2018; São Paulo, 2018)

Para a definição de espécies exóticas-invasoras foi utilizada a base de dados do Instituto Hórus (2018). Para os peixes foram consideradas as exóticas ao Alto Rio Paraná, que é o trecho da bacia onde está inserida a área de estudo (Langeani et al., 2007).

Agrupamos arbitrariamente as espécies em três categorias quanto aos ecossistemas que habitam: 1) aquáticas, inclui as espécies de áreas úmidas que ocorrem nos corpos d'água, bancos de areia ou exclusivamente em meio à vegetação aquática emersa ou flutuante; 2) campestres, espécies originárias dos campos naturais e cerrados menos arborizados e que se adaptaram às pastagens, canaviais, gramados, jardins e hortas e 3) florestais, inclui espécies do interior e bordas dos remanescentes de matas, de cerradão e outras formas de cerrado mais arborizados, e algumas espécies que utilizam pomares e outras áreas similares.

Quanto à sua presença na área de estudo, as aves foram agrupadas em quatro categorias: 1) residentes com permanência o ano todo e evidências de reprodução, incluindo espécies parcialmente migratórias nas quais alguns indivíduos deixam a área sazonalmente; 2) reprodutivas migratórias, quando se reproduzem durante a estação chuvosa, mas toda a população local emigra durante a seca; 3) migratórias, não se reproduzem mas visitam a área todos os anos provenientes de outras áreas do estado de São Paulo ou do Brasil, do sul da América do Sul e da América do Norte e 4) ocasionais, quando presentes de forma irregular ou apenas como indivíduos vagantes. Para esta classificação nos baseamos em Willis (1979), Magalhães (1999), Robinson e Pizo (2017) e Somenzari et al. (2018).

As fotos foram obtidas por meio de câmera fotográfica digital com zoom óptico de 42x.

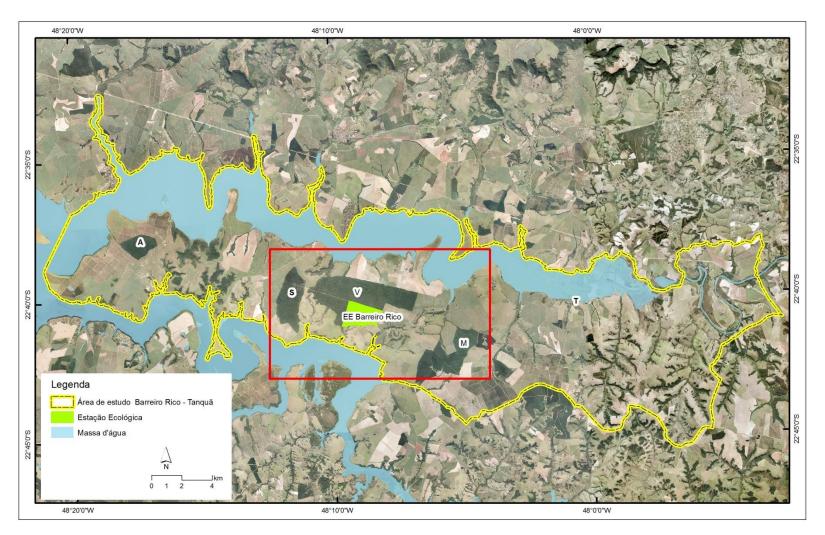


Figura 4.1. Localidades citadas. O retângulo vermelho corresponde à fazenda Barreiro Rico original. Remanescentes Florestais: A = Água Sumida (240 ha); M = Monal (374 ha); S = Sarã (501 ha) e V = Viraeiro/Tabatinguera (1.450 ha). T indica o Tanquã.

Figura 4.2. Vista geral da planície de inundação do Tanquã, Piracicaba-SP.

Figura 4.3. Vista geral do remanescente florestal de 1.450ha Viraeiro/Tabatinguera, Anhembi-SP.

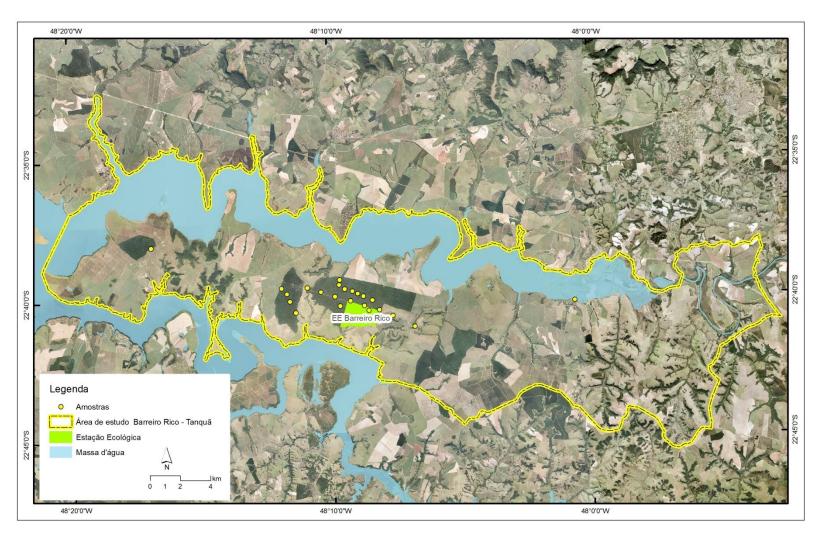


Figura 4.4. Localidades amostradas durante o trabalho de campo entre 23 e 26/06/2018.

4.3. Diagnóstico e Análise

4.3.1. Mamíferos

Entre as 56 espécies de mamíferos registradas para a área (Antunes e Eston, 2009; d'Horta et al., 2013; Anexo I), 12 (21%) são consideradas ameaçadas de extinção em pelo menos uma das listas consultadas (Tabela 4.1). As espécies florestais apresentaram a maior riqueza e o maior número de formas ameaçadas de extinção quando comparadas às dos demais conjuntos de ecossistemas (Figura 4.5).

Os primatas se destacam na mastofauna local e podem ser utilizados como indicadores da qualidade ambiental por serem dependentes de remanescentes florestais em melhor estado de conservação e evitarem se deslocar pelo solo. Os dois fragmentos florestais de maior porte (Figura 4.1),

Viraeiro/Tabatinguera e Sarã, estão entre as poucas localidades paulistas a abrigar cinco espécies de primatas (Martins, 2005). Todas essas espécies são endêmicas ao bioma Mata Atlântica e três (60%) estão ameaçadas de extinção: o bugio-ruivo Alouatta guariba clamitans, o muriqui-do-sul Brachyteles arachnoides e o sagui-da-serra-escuro Callithrix aurita.

A população local do muriqui-do-sul constitui atualmente o registro mais interiorano da espécie no bioma. Apesar de suas maiores populações se encontrarem nas florestas úmidas das Serras de Paranapiacaba, do Mar e Mantiqueira, a preservação dessa população é muito importante, por se tratarem de indivíduos adaptados à floresta estacional. Martins (2005) estimou a densidade da espécie, no ano 2000, em 35 indivíduos por km² no fragmento Viraeiro, 23 ind./km² no Sarã e em 19 ind./km² para o Monal.

O bugio-ruivo estava presente em todos os fragmentos amostrados por Martins e apresentava densidades médias entre 8 e 34 ind./km². Recentemente, em todo o estado de São Paulo, essa foi a espécie de primata mais afetada pela disseminação do vírus da febre amarela nos remanescentes florestais, declinando acentuadamente ou mesmo se extinguindo localmente em certas áreas (Bicca-Marques et al., 2017).

Para o sagui-da-serra-escuro não foi possível a Martins estimar sua densidade nos fragmentos. A autora obteve três visualizações de grupos no Viraeiro, com média de 3,7 indivíduos/grupo, e de um indivíduo no Sarã. Antunes e Eston (2009) relataram três encontros com grupos da espécie no Viraeiro, com média de 1,66 indivíduos/grupo. Na década de 1980, Torres-de-Assumpção (1983) estimou 15 indivíduos/km² para este fragmento. Os dados, com as devidas ressalvas por causa de diferenças entre as metodologias adotadas por esses autores, indicam que provavelmente a espécie está em declínio localmente. Não há registro de saguis exóticos-invasores nos fragmentos da área de estudo, provenientes de solturas de animais apreendidos com traficantes de fauna. Tais primatas constituem em certas regiões, como na grande São Paulo, importante fator de declínio do sagui-da-serra-escuro por meio da competição por recursos e eventual hibridação.

O veado-mateiro *Mazama americana* (Figura 4.6) é outra espécie de mamífero ameaçado que depende de áreas florestais com pouca alteração (Duarte e Vogliotti, 2009). No interior do estado apenas três populações apresentam um número razoável de indivíduos, o Parque Estadual do Morro do Diabo, a região da antiga Fazenda Santa Carlota no município de Cajuru e a área de Barreiro Rico (Duarte e Vogliotti, 2009). Além da perda e fragmentação de habitats, a caça e a predação por cães domésticos são causas importantes de mortalidade para essa espécie.

As demais espécies de mamíferos ameaçadas de extinção são menos exigentes quanto à integridade ecológica dos ecossistemas, são capazes de se deslocar nas matrizes agropecuárias e algumas delas, como o lobo-guará *Chrysocyon brachyurus*, podem frequentar áreas bastante antropizadas. Elas estão ameaçadas pela caça, inclusive como retaliação por consumo de cultivos ou criações, atropelamentos e por doenças e parasitas provenientes de animais domésticos. No caso da lontra *Lontra longicaudis*, espécie aquática, podem ocorrer afogamentos de indivíduos que ficam presos em redes de pesca.

Duas espécies exóticas invasoras foram detectadas na região. O javali ou javaporco *Sus scrofa* causa diversos danos aos ecossistemas. Ao escavar o solo em busca de tubérculos, minhocas e insetos, e ao chafurdar em áreas de nascentes, diminui a cobertura de vegetação, a diversidade de plantas e altera as propriedades do solo; preda pequenos animais, ovos e filhotes; compete com as espécies nativas por recursos; pode transmitir patógenos e parasitas a estas espécies e a animais de criação, e dissemina espécies vegetais exóticas-invasoras (Pedrosa et al., 2015).

Do ponto de vista econômico, consome e danifica cultivos, e preda animais de criação. Há a possibilidade da alta densidade destes suínos favorecer o crescimento populacional do morcego-vampiro *Desmodus rotundus*, o que pode acarretar no aumento dos casos de raiva e outras zoonoses em animais de criação e até mesmo em humanos (Galetti et al., 2016). Para a lebre *Lepus europaeus* não há informações sobre seus impactos aos ecossistemas nativos. Contudo, são bem conhecidos os prejuízos causados devido ao consumo de cultivos agrícolas (Bonino et al., 2010; Costa e Fernandes, 2010). Há a percepção nos moradores com quem conversamos de que, recentemente, a espécie está menos frequente na região. Baseados no tamanho do remanescente, no estado de conservação, no número de espécies e abundância local, Galetti et al. (2009) consideraram o fragmento Viraeiro como de alta prioridade para a conservação dos mamíferos de grande porte da Mata Atlântica e os fragmentos Monal e Sarã como de média prioridade.

Tabela 4.1. Espécies de mamíferos ameaçadas de extinção, vulneráveis (VU) e em perigo (EN), registradas na área de estudo, segundo as listas de São Paulo, do Brasil e da IUCN.

	_	São	Bras	IUC
Nome Científico	Nome Popular	Paulo	il	N
Alouatta guariba clamitans Cabrera,				
1958	bugio-ruivo	EN	VU	
Brachyteles arachnoides (É. Geoffroy,				
1806)	muriqui-do-sul	EN	EN	EM
Callithrix aurita (E. Geoffroy in Humboldt,	sagui-da-serra-			
1812)	escuro	EN	EN	VU
Chrysocyon brachyurus (Illiger, 1815)	lobo-guará raposinha-do-	VU	VU	
Lycalopex vetulus (Lund, 1842)	campo	VU	VU	
Lontra longicaudis (Olfers, 1818)	lontra	VU		
Leopardus sp.	gato-do-mato	VU	VU	VU
Leopardus pardalis (Linnaeus, 1758)	jaguatirica	VU		
Puma concolor (Linnaeus, 1771)	onça-parda	VU	VU	
Puma yagouaroundi (É. Geoffroy, 1803)	jaguarundi		VU	
Mazama americana Erxleben, 1777	veado-mateiro	EN		
Tayassu pecari (Link, 1795)	queixada	EN	VU	VU

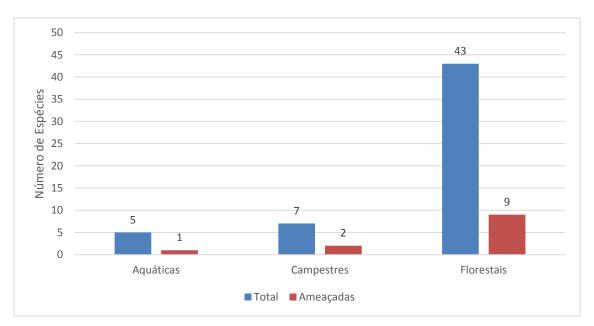


Figura 4.5. Número de espécies de mamíferos registradas na área de estudo e número de espécies consideradas ameaçadas de extinção, em relação às categorias de ecossistemas reconhecidas.

Figura 4.6. Mamíferos de grande porte registrados no fragmento Viraeiro/Tabatinguera, Fazenda Bacury, em 23/06/2018. Veado-mateiro Mazama americana cruzando a trilha e cateto Pecari tajacu ao lado de plataforma com comedouro no meio da mata.

4.3.2. Aves

Quatrocentas e vinte e seis espécies de aves já foram registradas para a área de estudo (Magalhães, 1999; Antunes e Willis, 2003; Willis e Oniki, 2003; d'Horta et al., 2013; Robinson e Pizo, 2017; Anexos II e VI). Este valor representa 52% do total de espécies encontrado no estado de São Paulo (n=816; Figueiredo, 2017). Espécies residentes predominam (75%), mas espécies migratórias constituem um componente importante da assembleia aquática, 32% (Figura 4.7). Quarenta e seis espécies (11%) são endêmicas ao bioma Mata Atlântica (Tabela 4.2) e cinco (1%) ao Cerrado (Motta-Júnior et al., 2008). As endêmicas do Cerrado englobam três espécies florestais, o cisqueiro-do-rio Clibanornis rectirostris, o soldadinho Antilophia galeata e o pula-pulade-sobrancelha Myiothlypis leucophrys. As outras duas são originárias do cerrado senso restrito e se adaptaram a áreas antropizadas: a gralha-do-campo Cyanocorax cristatellus ocorre em locais arborizados, como bordas de mata e pomares, e o batuqueiro Saltatricula atricollis pode colonizar pastagens com alta densidade de arbustos e arvoretas. Vinte e uma espécies (5%) são consideradas ameaçadas de extinção em pelo menos uma das listas consultadas (Tabela 4.3). As espécies florestais apresentaram a maior riqueza e o maior número de formas ameaçadas de extinção quando comparadas aos demais conjuntos de ecossistemas (Figura 4.8).

A avifauna florestal está entre as melhor conhecidas no Brasil e é uma das poucas em que a maioria das espécies está representada por espécimes comprobatórios e gravações de áudio de vocalizações depositados em coleções científicas brasileiras (Magalhães, 1999; Figura 4.9). O início desses estudos se deu por iniciativa do Sr. José Carlos Reis de Magalhães, então proprietário da Fazenda Barreiro Rico, que ao tomar conhecimento de que a instalação da barragem de Barra Bonita no rio Tietê inundaria perto de 4.800 ha da fazenda, constatou que as florestas ribeirinhas locais seriam dizimadas com prováveis consequências para as espécies de aves (Magalhães, 1999). Dessa forma, convidou técnicos do atual Museu de Zoologia da USP para efetuarem o diagnóstico e o monitoramento da avifauna entre 1957 e 1966, continuado por Willis entre 1975 e 1977 (Willis, 1979), Magalhães e Bokermann entre 1975 e 1996 (Magalhães, 1999) e Antunes entre 2000 e 2002 (Antunes, 2005).

No período de 45 anos de monitoramento algumas espécies restritas às florestas ribeirinhas e outras habitantes de florestas de interflúvio parecem ter se extinguido localmente, provavelmente não somente pela perda de habitat, mas também devido à degradação, fragmentação e perda de conectividade entre os remanescentes florestais (Antunes, 2005). Contudo, com exceção da jacutinga *Aburria jacutinga* (Spix,

1825) registrada pela última vez na região em 1926 (Willis, 1979), mantivemos todas essas espécies em nossas listas e análises. Tomamos esta decisão pelos seguintes motivos: 1) não foi possível amostrar exaustivamente todos os fragmentos florestais da região, apenas os de maior porte; 2) algumas espécies apresentam boa capacidade de deslocamento e podem recolonizar a área de estudo a partir de outras porções do estado e 3) a possibilidade de quando necessário se efetuar reintroduções e revigoramentos populacionais.

As aves das áreas úmidas foram amostradas por Magalhães (1999) e Robinson e Pizo (2017). Na última década o Tanquã se tornou um destino turístico muito valorizado pelos observadores de aves, que contribuíram significativamente para o inventário da avifauna aquática. A região se destaca pela riqueza desse grupo, 94 espécies, pelo significativo número de espécies migratórias e pela abundância de indivíduos presentes (Robinson e Pizo, 2017). O Tanquã figura entre as áreas importantes para aves migratórias no estado de São Paulo (Oliveira et al., 2016). Essas aves que frequentam o Tanquã podem utilizar a área por poucos dias para repor as reservas de gordura corporal e continuar a migração até outro ponto de parada ou permanecer por várias semanas (Robinson e Pizo, 2017).

A distribuição das aves aquáticas é influenciada principalmente pela profundidade da coluna d' água e pelo pulso de inundação. Estes fatores determinam a geração e manutenção dos habitats e dos recursos utilizados por essas espécies. Como dito anteriormente, a manutenção artificial do nível baixo da água durante a estação chuvosa é uma característica relevante da região do Tanquã e que resultou na grande diversidade de aves local. A estação chuvosa é também, o período de chegada ou passagem das espécies norte-americanas na região. A riqueza e a abundância das espécies são maiores nesta estação devido à presença de habitats que são escassos no estado de São Paulo nesse período do ano, como os bancos de sedimentos emersos, e a água mais rasa que gera a concentração de peixes, crustáceos, moluscos e putras presas potenciais para as aves (Robinson e Pizo, 2017).

Assim, alterações das características desse padrão de fluxo das águas do rio Piracicaba serão danosas a avifauna local e, se considerarmos o uso por espécies migratórias, provavelmente impactará populações de espécies que se reproduzem em outras regiões do país e até na América do Norte.

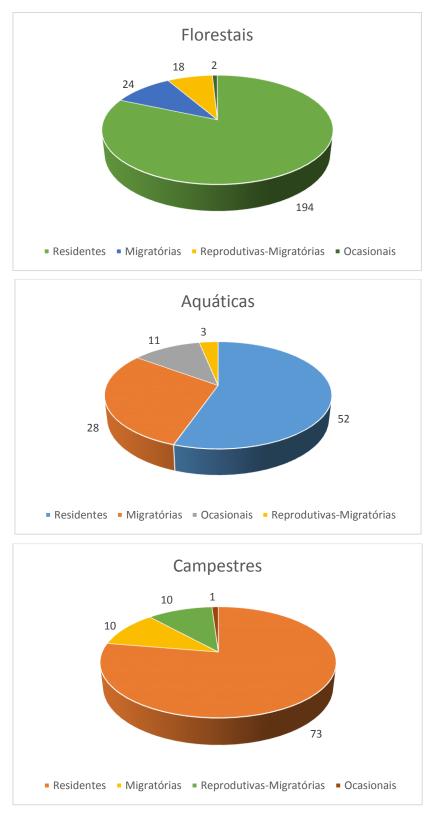


Figura 4.7. Distribuição das espécies nas categorias de permanência na área de estudo em relação aos conjuntos de ecossistemas considerados.

Tabela 4.2. Espécies de aves endêmicas ao bioma Mata Atlântica (Lima, 2013) registradas na área de estudo.

area de estudo.	
Nome Científico	Nome Popular
Tinamus solitarius (Vieillot, 1819)	macuco
Odontophorus capueira (Spix, 1825)	uru
Megascops atricapilla (Temminck, 1822)	corujinha-sapo
Pulsatrix koeniswaldiana (Bertoni & Bertoni, 1901)	murucututu-de-barriga-amarela
Thalurania glaucopis (Gmelin, 1788)	beija-flor-de-fronte-violeta
Notharchus swainsoni (Gray, 1846)	macuru-de-barriga-castanha
Ramphastos dicolorus Linnaeus, 1766	tucano-de-bico-verde
Selenidera maculirostris (Lichtenstein, 1823)	araçari-poca
Pteroglossus bailloni (Vieillot, 1819)	araçari-banana
Picumnus temminckii Lafresnaye, 1845	picapauzinho-de-coleira
Campephilus robustus (Lichtenstein, 1818)	pica-pau-rei
Triclaria malachitacea (Spix, 1824)	sabiá-cica
Terenura maculata (Wied, 1831)	zidedê
Dysithamnus stictothorax (Temminck, 1823)	choquinha-de-peito-pintado
Hypoedaleus guttatus (Vieillot, 1816)	chocão-carijó
Mackenziaena severa (Lichtenstein, 1823)	borralhara
Myrmoderus squamosus (Pelzeln, 1868)	papa-formiga-de-grota
Pyriglena leucoptera (Vieillot, 1818)	papa-taoca-do-sul
Drymophila ferruginea (Temminck, 1822)	trovoada
Drymophila ochropyga (Hellmayr, 1906)	choquinha-de-dorso-vermelho
Conopophaga melanops (Vieillot, 1818)	cuspidor-de-máscara-preta
Psilorhamphus guttatus (Ménétriès, 1835)	tapaculo-pintado
Dendrocincla turdina (Lichtenstein, 1820)	arapaçu-liso
Campylorhamphus falcularius (Vieillot, 1822)	arapaçu-de-bico-torto
Anabacerthia lichtensteini (Cabanis & Heine, 1859)	limpa-folha-ocráceo
Philydor atricapillus (Wied, 1821)	limpa-folha-coroado
Phacellodomus ferrugineigula (Pelzeln, 1858)	joão-botina-do-brejo
Synallaxis ruficapilla Vieillot, 1819	pichororé
Chiroxiphia caudata (Shaw & Nodder, 1793)	tangará
Laniisoma elegans (Thunberg, 1823)	chibante
Phibalura flavirostris Vieillot, 1816	tesourinha-da-mata
Lipaugus lanioides (Lesson, 1844)	tropeiro-da-serra
Procnias nudicollis (Vieillot, 1817)	araponga
Platyrinchus leucoryphus Wied, 1831	patinho-de-asa-castanha
Todirostrum poliocephalum (Wied, 1831)	teque-teque
Myiornis auricularis (Vieillot, 1818)	miudinho
Hemitriccus diops (Temminck, 1822)	olho-falso
Hemitriccus orbitatus (Wied, 1831)	tiririzinho-do-mato
Hemitriccus nidipendulus (Wied, 1831)	tachuri-campainha
Phyllomyias griseocapilla Sclater, 1862	piolhinho-serrano
Attila rufus (Vieillot, 1819)	capitão-de-saíra
Muscipipra vetula (Lichtenstein, 1823)	tesoura-cinzenta
Haplospiza unicolor Cabanis, 1851	cigarra-bambu

Hemithraupis ruficapilla (Vieillot, 1818)	saíra-ferrugem
Tachyphonus coronatus (Vieillot, 1822)	tiê-preto
Saltator fuliginosus (Daudin, 1800)	bico-de-pimenta

Tabela 4.3. Espécies de aves ameaçadas de extinção, vulneráveis (VU), em perigo (EN) e criticamente em perigo (CR), registradas na área de estudo, segundo as listas de São Paulo, do Brasil e da IUCN.

Nome Científico	Nome Popular	São Paulo	Bras il	IUC N
Tinamus solitarius (Vieillot, 1819)	macuco	VU		
Sarkidiornis sylvicola Ihering & Ihering, 1907	pato-de-crista	VU		
Ciconia maguari (Gmelin, 1789)	maguari	VU		
Circus buffoni (Gmelin, 1788)	gavião-do-banhado	VU		
Gallinago undulata (Boddaert, 1783)	narcejão	VU		
Calidris subruficollis (Vieillot, 1819)	maçarico-acanelado	VU		
Sternula superciliaris (Vieillot, 1819)	trinta-réis-pequeno	EN		
Phaetusa simplex (Gmelin, 1789)	trinta-réis-grande	VU		
Geotrygon violacea (Temminck, 1809)	juriti-vermelha	EN		
Hydropsalis maculicaudus (Lawrence, 1862)	bacurau-de-rabo- maculado	EN		
Nonnula rubecula (Spix, 1824)	macuru	EN		
Selenidera maculirostris (Lichtenstein, 1823)	araçari-poca	VU		
Pteroglossus bailloni (Vieillot, 1819)	araçari-banana	VU		
Primolius maracana (Vieillot, 1816)	maracanã	VU		
Laniisoma elegans (Thunberg, 1823)	chibante	VU		
Lipaugus lanioides (Lesson, 1844)	tropeiro-da-serra	VU		
Procnias nudicollis (Vieillot, 1817)	araponga			VU
Platyrinchus leucoryphus Wied, 1831	patinho-de-asa-castanha	VU		VU
Myiothlypis leucophrys (Pelzeln, 1868)	pula-pula-de-sobrancelha	VU		
Sporophila pileata (Sclater, 1865)	caboclinho-branco	EN		
Sporophila hypoxantha Cabanis, 1851	caboclinho-de-barriga- vermelha	CR	VU	

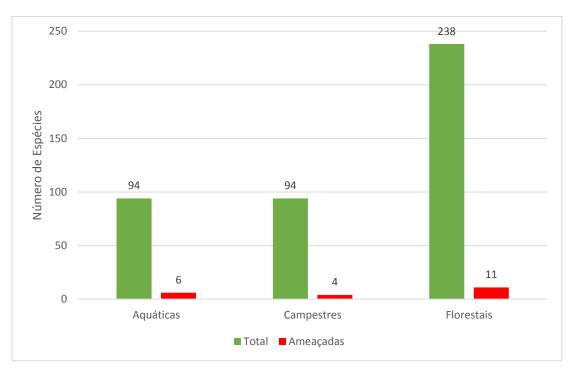


Figura 4.8. Número de espécies de aves registradas na área de estudo e de espécies consideradas ameaçadas de extinção, em relação às categorias de ecossistemas reconhecidas.

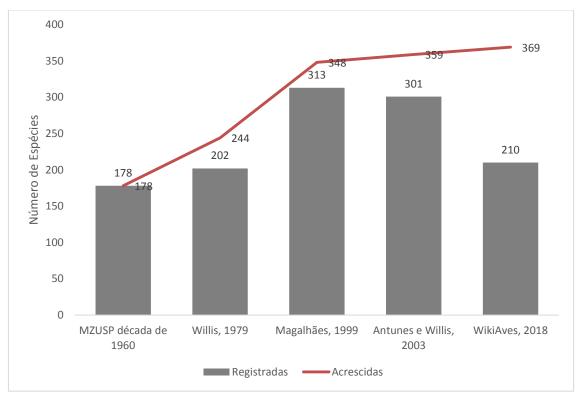


Figura 4.9. Curva de acúmulo de espécies para a avifauna de Barreiro Rico, mostrando uma tendência de estabilização no acréscimo de espécies com apenas 10 registros novos nos últimos 15 anos.

As migrantes norte-americanas que ocorrem no baixo Piracicaba-médio Tietê utilizam a a rota do Brasil Central (Oliveira et al., 2016; Tabela 4). Vinte e duas espécies foram

registradas até o momento, representando 5% do total da avifauna e 35% do total de espécies migratórias locais (n = 62). Os indivíduos que migram a partir da costa leste do Canadá e Estados Unidos atravessam o oceano Atlântico em voos ininterruptos, ou com paradas breves em ilhas do Caribe, enquanto os que partem do interior da América do Norte atravessam os países da América Central. Ambos os grupos continuam pela costa atlântica sulamericana e entram pela foz do Rio Amazonas, sobem os rios Tocantins e Araguaia, passando pelo Brasil Central, atingem o vale do Rio Paraná, sobem o Tietê e seus afluente maiores até atingirem a costa, seguindo por esta até o Rio Grande do Sul, Uruguai e Argentina (Oliveira et al., 2016). No seu retorno podem utilizar esta rota, apenas parte dela ou outras quatro rotas principais mapeadas em território brasileiro (Oliveira et al., 2016).

Tabela 4.4. Espécie migratórias que se reproduzem na América do Norte registradas na área de estudo, principalmente durante a estação chuvosa, agosto a abril.

Nome Científico	Nome Popular
Anas discors Linnaeus, 1766	marreca-de-asa-azul
Pandion haliaetus (Linnaeus, 1758)	águia-pescadora
Pluvialis dominica (Statius Muller, 1776)	batuiruçu
Charadrius semipalmatus Bonaparte,	
1825	batuíra-de-bando
Limosa haemastica (Linnaeus, 1758)	maçarico-de-bico-virado
Actitis macularius (Linnaeus, 1766)	maçarico-pintado
Tringa solitaria Wilson, 1813	maçarico-solitário
	maçarico-grande-de-perna-
<i>Tringa melanoleuca</i> (Gmelin, 1789)	amarela
Tringa flavipes (Gmelin, 1789)	maçarico-de-perna-amarela
Calidris fuscicollis (Vieillot, 1819)	maçarico-de-sobre-branco
Calidris melanotos (Vieillot, 1819)	maçarico-de-colete
Calidris himantopus (Bonaparte, 1826)	maçarico-pernilongo
Calidris subruficollis (Vieillot, 1819)	maçarico-acanelado
Calidris pugnax (Linnaeus, 1758)	combatente
Phalaropus tricolor (Vieillot, 1819)	pisa-n'água
Coccyzus americanus (Linnaeus, 1758)	papa-lagarta-de-asa-vermelha
Chordeiles minor (Forster, 1771)	bacurau-norte-americano
Falco peregrinus Tunstall, 1771	falcão-peregrino
Progne subis (Linnaeus, 1758)	andorinha-azul
Riparia riparia (Linnaeus, 1758)	andorinha-do-barranco
Hirundo rustica Linnaeus, 1758	andorinha-de-bando
Petrochelidon pyrrhonota (Vieillot, 1817)	andorinha-de-dorso-acanelado

Apenas quatro espécies exóticas de aves foram registradas na área de estudo, o pombo-doméstico Columba livia, o bico-de-lacre Estrilda astrild e o pardal Passer

domesticus, são sinantrópicos com baixo potencial de impacto às biotas nativas. O cardeal-do-nordeste ou galo-da-campina *Paroaria dominicana* se estabeleceu nas áreas alteradas próximas ao rio Piracicaba a partir de solturas. Há registro de reprodução dessa espécie no Tanquã (Moraes, 2018). No dia 15 de outubro de 2016 observamos duas rolas-de-coleira *Streptopelia decaocto* na vila de Tanquã. Trata-se de espécie eurasiática utilizada como ave ornamental no Brasil. Fomos informados que moradores de Piracicaba soltaram as aves argumentando que elas estariam protegidas no local.

4.3.3. Anfíbios e Répteis

Na localidade de estudo foram registradas 25 espécies de anfíbios anuros, distribuídas em cinco famílias (Bufonidae, Craugastoridae, Hylidae, Leptodactylidae e Microhylidae), uma espécie de cágado (Chelidae), uma espécie de jacaré (Alligatoridae), sete espécies de lagartos (Gekkonidae, Mabuyidae, Leiosauridae, Tropiduridae, Teiidae), Polychrotidae, duas espécies de anfisbenídeos (Amphisbaenidae) e onze espécies de serpentes (Boidae, Colubridae, Dipsadidae, Viperidae), em um total de 47 espécies da herpetofauna (Anexos III e IV) (d'Horta et al., 2013; Species Link, 2018).

A maior parte dos anfíbios registrados (56%) apresenta ampla distribuição geográfica, sendo comumente encontradas em várias regiões do Brasil como Dendropsophus minutus, D. nanus, Hypsiboas albopunctatus, Leptodactylus fuscus, L. labyrinthicus, L. latrans, L. mystaceus, L. mystacinus, L. podicipinus, Physalaemus cuvieri, Rhinella schneideri, Scinax fuscomarginatus, S. fuscovarius e Elachistocleis cesarii (Valdujo et al., 2012; Haddad et al., 2013; Frost, 2018). Já outros anfíbios observados, estão fortemente associados ao domínio do Cerrado como H. lundii, espécie típica de formações florestais como matas de galeria e floresta estacional (Araujo et al., 2009; Araujo e Almeida-Santos, 2011; Maffei et al., 2011; Valdujo et al., 2012; Araujo et al., 2013; Maffei et al., 2015; Araujo, 2017) e D. elianeae, L. furnarius, P. centralis, P. marmoratus e P. nattereri que apresentam uma grande dependência das formações vegetais abertas presentes neste domínio (Uetanabaro et al., 2008; Valdujo, 2011; Araujo et al., 2013). As espécies Haddadus binotatus e H. faber estão presentes nas regiões Sul, Sudeste e estado da Bahia (Haddad et al., 2013). H. binotatus ocorre frequentemente associada à floresta ombrófila (Araujo et al., 2010; Forlani et al., 2010; Rossa-Feres et al., 2011), mas apresenta uma ocorrência ocasional em remanescentes de floresta estacional semidecidual presentes no interior do estado de São Paulo

(Brassaloti et al., 2010; Araujo e Almeida-Santos, 2013). Já *H. faber* é observada em bordas de mata e formações vegetais abertas (Araujo e Almeida-Santos, 2011; Maffei et al., 2011; Araujo e Almeida-Santos, 2013; Maffei et al., 2015; Araujo, 2017). *R. ornata* e *D. sanborni* exibem distribuição circunscrita a alguns estados do sul e sudeste do Brasil, sendo que *R. ornata* está restrita a remanescentes florestais de Mata Atlântica e *D. sanborni* ocorre em ambientes com vegetação aberta (Haddad et al., 2013; Frost, 2018).

Em relação aos répteis, o cágado *Phrynops geoffroanus* apresenta distribuição geográfica bastante extensa, ocorrendo em todas as regiões brasileiras (Costa e Bérnils, 2018). O jacaré *Caiman latirostris* foi registrado em alguns estados da região Centro-Oeste (Mato Grosso do Sul e Goiás), estando amplamente distribuído nas regiões Nordeste, Sudeste e Sul do país (Costa e Bérnils, 2018).

Considerando os lagartos, Ameiva ameiva ameiva, Notomabuya frenata e Salvator merianae apresentam ampla distribuição pelo território brasileiro (Noqueira, 2006), sendo que A. a. ameiva e S. merianae podem ser consideradas mais generalistas no uso do hábitat, ocupando uma extensa gama de ambientes que incluem formações abertas e florestais de Cerrado, floresta estacional e também áreas alteradas pelo homem (Nogueira, 2006; Thomé, 2006; Araujo e Almeida-Santos, 2011; Araujo et al., 2014; Araujo, 2017). Já a espécie N. frenata é observada apenas em formações florestais de Cerrado (mata de galeria, cerradão e cerrado denso) e também em localidades de floresta estacional (Nogueira, 2006; Araujo e Almeida-Santos, 2011; Araujo et al., 2014; Araujo, 2017). Hemidactylus mabouia é uma espécie introduzida que também possui vasta distribuição pelo Brasil (Vanzolini et al., 1980; Ávila-Pires, 1995). Vanzolini (1978) sugere que essa distribuição possa ter sido facilitada pela preferência da espécie por áreas abertas e de clima seco. Sua presença em áreas antropizadas e periantropizadas é também muito comum, principalmente em edificações humanas. Tropidurus torquatus está presente em vários estados das regiões Centro-Oeste, Nordeste e Sudeste do país, com extensa distribuição no domínio da Mata Atlântica e penetrando amplamente pelo Cerrado (Nogueira, 2006; Costa e Bérnils, 2018). Nesse domínio, aparentemente é mais abundante em áreas próximas a florestas ciliares ou matas de galerias (bordas de mata), o que o torna adaptado à interface entre as formações abertas de cerrado e as matas de galeria e floresta estacional (Noqueira, 2006). Polychrus acutirostris ocorre ao longo de toda a diagonal de formações vegetais abertas do país, distribuindo-se desde o contato com a Amazônia até o estado de São Paulo e está fortemente associado às formações

campestres e savânicas do Cerrado (Nogueira, 2006; Costa e Bérnils, 2018). Já *Enyalius perditus* possui distribuição restrita aos remanescentes florestais do Domínio Atlântico da região Sudeste e no estado do Paraná (Costa e Bérnils, 2018).

Das espécies de anfisbenídeos encontradas nesse estudo, *Amphisbaena alba* já foi registrada em todo território brasileiro, exceto nos estados do Acre e Rio Grande do Sul e *Leposternon microcephalum* foi observada em alguns estados do Norte, Nordeste, Centro-Oeste e em todos os estados das regiões Sul e Sudeste (Costa e Bérnils, 2018).

Em relação às serpentes, as espécies *Spilotes pullatus pullatus*, *Philodryas patagoniensis* e *Erythrolamprus reginae* ocorrem em todas as regiões do país (Costa e Bérnils, 2018). *Boa constrictor amarali* está presente nas regiões Nordeste, Centro-Oeste e em alguns estados do Sudeste e Sul, como Minas Gerais, São Paulo e Paraná (Costa e Bérnils, 2018). *Eunectes murinus* foi registrada nas regiões Norte, Centro-Oeste, Sudeste, Sul e em alguns estados do Nordeste (Costa e Bérnils, 2018). *E. frenatus* e *Phalotris mertensii* apresentam distribuição mais restrita, ocorrendo na região Centro-Oeste e nos estados de Minas Gerais, São Paulo, Paraná (Costa e Bérnils, 2018). Já *E. p. poecilogyrus* e *E. m. merremii* foram observadas em alguns estados do Nordeste e na região Sudeste (Costa e Bérnils, 2018). Os viperídeos *Bothrops jararaca* e *Crotalus durissus terrificus* estão amplamente distribuídos pelas regiões Sul e Sudeste do Brasil, estando *B. jararaca* associada às formações florestais da Mata Atlântica e *C. d. terrificus* presente em ambientes com vegetação aberta, bordas de mata e áreas antropizadas (Sazima, 1992; Campbell e Lamar, 2004; Sawaya et al., 2008; Costa e Bérnils, 2018).

A herpetofauna local é composta por espécies adaptadas a sazonalidade climática da região, que originalmente era formada por um mosaico de formações de Cerrado e floresta estacional semidecidual. Grande parte das espécies dessa localidade ocorre em ambientes com formações vegetais abertas e em sua interface com os fragmentos florestais (borda de mata). Alguns estudos apontam uma grande similaridade faunística entre as taxocenoses de anfíbios que ocorrem em áreas de Cerrado e floresta estacional semidecidual (Araujo et al. 2009, Santos et al. 2009, Vasconcelos et al. 2011). Essa similaridade pode ser atribuída ao fato da floresta estacional semidecidual no estado possuir características de descontinuidade, apresentando-se permeada por manchas dispersas de Cerrado em suas diversas fitofisionomias (Leitão-Filho 1987, Durigan et al. 2004).

A riqueza de espécies de anfíbios observada na localidade (25 espécies) mostrou-se superior a registrada na Estação Ecológica de Bauru (20 espécies) e inferior a outras unidades de conservação que apresentam predomínio de floresta estacional semidecidual no estado de São Paulo, como as estações ecológicas de Angatuba (31 espécies) e Caetetus (34 espécies) e o Parque Estadual do Morro do Diabo (28 espécies) (Santos et al., 2009; Brassaloti et al., 2010; Araujo e Almeida-Santos, 2013; Araujo, 2017). Considerando os répteis, existem poucos inventários realizados na região disponíveis na literatura científica. Em relação aos lagartos, a riqueza de espécies obtida (sete espécies) é superior à encontrada na Estação Ecológica de Bauru e Floresta Estadual de Pederneiras, ambas apresentando cinco especies, e inferior a outras unidades de conservação de floresta estacional no estado, como a Estação Ecológica de Jataí (nove espécies) e Parque Estadual do Morro do Diabo (oito espécies) (Dixo et al., 2006; Figueiredo, 2012; Serrano-Filho, 2012; Araujo, 2017). A riqueza de espécies de serpentes verificada nesse estudo foi incipiente e não reflete a riqueza esperada para a região, inviabilizando qualquer tipo de comparação com outras localidades. As serpentes são menos abundantes e mais difíceis de serem amostradas que os anfíbios, sendo necessário maior esforço amostral para produzir uma lista mais completa.

Nenhuma das espécies registrada está presente na lista vermelha internacional de espécies ameaçadas de extinção (*International Union for Conservation of Nature - IUCN*, 2018), lista nacional oficial de espécies da fauna ameaçadas de extinção (Brasil, 2014) e lista de espécies de vertebrados e invertebrados da fauna silvestre ameaçadas de extinção do estado de São Paulo (São Paulo, 2014).

Apesar de a localidade exibir uma riqueza de espécies de anfíbios e répteis inferior a outras localidades de floresta estacional semidecidual no estado de São Paulo e não possuir espécies da herpetofauna ameaçadas de extinção é importante ressaltar que cada fragmento florestal preservado, por menor que seja, é vital para a manutenção desses grupos faunísticos no interior do estado. A intensa fragmentação desta fitofisionomia levou a perda e desconexão de hábitats, propiciando a degradação de corpos d'água que são utilizados como sítios reprodutivos por muitas espécies de anfíbios, interferindo diretamente no ciclo reprodutivo dessas spécies e propiciando o declínio e desaparecimento das populações (Becker et al. 2007). A falta de ações realistas e eficazes para a conservação, recuperação e conexão dos remanescentes dessa formação vegetal contribuem para o isolamento das populações, o que

prejudica o fluxo contínuo entre os indivíduos e a diversidade genética, essenciais para garantir metapopulações viáveis (Hanski, 1998).

4.3.4. Peixes

Foram registradas 89 espécies de peixes na área de estudo (Anexo V). A ictiofauna é dominada por espécies de média a alta resiliência, adaptada a ambientes degradados e a condições de estresse ambiental (Petesse et al., 2007). Predominam espécies com hábito alimentar generalista, onívoras e iliófagas (que ingerem sedimentos).

Em reservatórios mais antigos como o de Barra Bonita, que tem 54 anos, as alterações ambientais em relação ao sistema fluvial original incluem: a sedimentação; o acúmulo de nutrientes, a eutrofização e o aumento do fitoplâncton; a diminuição da diversidade dos organismos bentônicos; a redução de predadores; o aumento na diversidade de espécies de pequeno porte, oportunistas, com ciclo de vida curto e crescimento rápido; e a dominância de espécies adaptadas a alta turbidez e baixa concentração de oxigênio (Agostinho et al., 1999).

A capacidade de retenção de água da barragem de Barra Bonita está declinando com o tempo devido ao processo de sedimentação, o que diminui os locais apropriados para a desova e pode prejudicar os peixes juvenis ao reduzir a oferta de alimentos e abrigos (Petesse et al., 2007). A alteração artificial do ciclo hidrológico impacta as espécies migratórias, pois o aumento da temperatura associado ao início da cheia, constituem os "sinais" que estimulam as alterações fisiológicas e comportamentais dessas espécies (Vazzoler e Menezes, 1992).

Quatro espécies (4%) são consideradas ameaçadas de extinção em pelo menos uma das listas consultadas (Tabela 4.5). Comparadas à maioria das espécies locais, as quatro apresentam grande porte, maior expectativa de vida e baixo potencial reprodutivo. E todas compartilham a característica de realizar migrações rio acima, contra a correnteza, para se reproduzir, os chamados peixes de piracema (Oyakawa et al., 2009). A sucessão de barragens ao longo do rio Tietê tornou um ambiente de águas correntes numa coleção de lagos, prejudicando significativamente este comportamento.

A perda e extrema degradação das matas ciliares foi outro fator de impacto negativo para as populações da piracanjuba *Brycon orbygnianus* e do pacu *Piaractus mesopotamicus*, já que são espécies que consomem grande quantidade de alimentos

provenientes dessa vegetação, tais como insetos, frutos, sementes e folhas (Oyakawa et al., 2009).

Os registros recentes da piracanjuba e do pacu devem ser todos provenientes de peixamentos, efetuados pela concessionária da barragem de Barra Bonita em parceria com associações de pescadores e ONGs locais (https://g1.globo.com/sp/piracicaba-regiao/noticia/instituto-solta-70-mil-filhotes-de-peixes-no-tanqua-em-piracicaba-para-repovoacao.ghtml). Contudo, os ictiólogos são céticos quanto à validade dessa atividade para a conservação das espécies pois, até o momento, não gerou o restabelecimento de populações autossuficientes e a diversidade genética das matrizes mantidas em cativeiro é relativamente baixa (Oyakawa et al., 2009).

As quatro espécies são alvo tanto da pesca esportiva quanto da profissional, e tais atividades incidindo sobre populações depauperadas contribui significativamente para o declínio e extinção local. Os peixamentos podem contrabalancear essa perda de indivíduos permitindo que a atividade se mantenha, mas como dito acima, podem gerar a falsa conclusão de recuperação populacional.

Outra ameaça aos peixes da região é a competição com espécies exóticas-invasoras, que representam 11% da icitiofauna local (n= 10; Tabela 6). Além das assinaladas na Tabela 6, Rivero et al. (2013) registraram um indivíduo de tambacu, híbrido entre o tambaqui amazônico (*Colossoma macropomum*) e o pacu (*Piaractus mesopotamicus*), e muito utilizado em piscicultura. Esta atividade também foi a reponsável pela introdução de seis (37%) das espécies exóticas encontradas (Tabela 6). Um indicativo da dominância dessas espécies na assembleia local é que a tilápia (*Coptodon rendalli*), a tilápia-do-nilo (*Oreochromis niloticus*) e a corvina (*Plagioscion squamosissimus*) representaram 42% do total de capturas dos pescadores profissionais da região da barragem de Barra Bonita no período amostral de 2003-2004 (Maruyama et al., 2009).

Tabela 4.5. Espécies de peixes ameaçadas de extinção, vulneráveis (VU), em perigo (EN) e criticamente em perigo (CR), registradas na área de estudo, segundo as listas de São Paulo e do Brasil.

Nome Científico	Nome Popular	São Paulo	Brasil
Brycon orbygnianus (Valenciennes, 1849)	piracanjuba	CR	EN
Prochilodus vimboides Kner, 1859	curimbatá-de-lagoa	VU	VU
Piaractus mesopotamicus (Holmberg, 1887)	pacu	EN	
Pseudoplatystoma corruscans (Spix & Agassiz, 1829)	pintado	EN	

Tabela 4.6. Espécies de peixes exóticas registradas na área de estudo e sua possível fonte de introdução (Langeani et al., 2007).

Nome Científico	Nome Popular	Fonte de Introdução
Cyprinus carpio Linnaeus, 1758	carpa	piscicultura
Gymnocorymbus ternetzi (Boulenger, 1895)	tetra-preto	aquarismo
Hoplerythrinus unitaeniatus (Agassiz, 1829)	jeju	pesca
Poecilia reticulata Peters, 1859	lebiste	controle de larvas de mosquitos
Astronotus crassipinnis (Heckel, 1840)	acará-açu	piscicultura
Cichla sp.	tucunaré	pesca
Satanoperca pappaterra (Heckel, 1840)	porquinho	piscicultura
Coptodon rendalli (Boulenger, 1897)	tilápia	piscicultura
Oreochromis niloticus (Linnaeus, 1758)	tilápia-do-Nilo	piscicultura
Plagioscion squamosissimus (Heckel, 1840)	corvina	piscicultura

Tabela 4.7. Principais espécies ou grupos de peixes pescados, em relação à porcentagem do volume desembarcado (%), pelos pescadores da região da represa de Barra Bonita (Maruyama et al., 2009). Am = espécie ameaçada de extinção e Exo = espécie exótica.

Espécie	%
tilápias Coptodon rendalli e Oreochromis niloticus Exo	26,7
mandis <i>Pimelodus</i> spp.	15,9
curimbatá Prochilodus lineatus	17,8
corvina <i>Plagioscion squamosissimus</i> Exo	11,6
cascudos Hypostomus spp. e Pterygoplichthys anisitsi	14,7
traíras Hoplias intermedius e Hoplias malabaricus	4,7
lambaris Astyanax spp. e Moenkhausia spp.	2,3
pintado Pseudoplatystoma corruscans Am	1,9
dourado Salminus brasiliensis	1,6
piaus <i>Leporinus</i> spp. e <i>Schizodon</i> spp.	1,2
pacu Piaractus mesopotamicus Am	0,8
piranha Serrasalmus maculatus	0,8
Total	100

4.4.4. Ameaças

4.4.4.1. Ecossistemas florestais

As principais ameaças à fauna florestal são a perda e a fragmentação de habitats. Os remanescentes estão isolados de áreas naturais maiores e uns dos outros, sofreram corte seletivo de árvores no passado que ocasionaram clareiras extensas e favoreceram o desenvolvimento de lianas agressivas. Devido aos efeitos de borda o vento adentra a uma distância de vários metros e nas ocasiões em que apresenta maior velocidade derruba árvores e arvoretas, aumentando a extensão das clareiras. Devido à maior insolação, as bordas e clareiras são mais ressecadas durante a estação seca, aumentando o material combustível para incêndios. Em 2012, entre 19 e 20 de setembro, um incêndio criminoso devastou perto de 30% da área dos fragmentos Sarã e Viraeiro (http://g1.globo.com/sp/piracicaba-regiao/noticia/2012/09/incendio-em-reserva-entre-anhembi-e-santa-maria-da-serra-e-controlado.html).

Para espécies terrestres de menor porte, a estrada municipal ANH 171 constitui uma barreira no trecho que atravessa os fragmentos, impedindo a travessia de indivíduos e o fluxo gênico, e apesar do tráfego relativamente baixo de veículos, ocorrem atropelamentos de animais. Observamos caminhões de grande porte descarregados trafegarem acima de 80km/h, mesmo o leito da estrada não sendo asfaltado. Entre 2000 e 2001 amostramos em seis ocasiões o trecho que corta o Viraeiro, perto de 5km, encontrando 19 carcaças ou 0,52/km. As vítimas foram principalmente serpentes e lagartos irreconhecíveis, mas pudemos identificar seis espécies de animais: tatugalinha Dasypus novemcinctus, tatu-peba Euphractus sexcinctus, tapeti Sylvilagus cachorro-do-mato brasiliensis. Cerdocyon thous, cobra-de-duas-cabeças Amphisbaena sp. e cascavel Crotalus durissus. Outros problemas gerados pela estrada são a poeira que se deposita sobre a vegetação e o risco de acidentes envolvendo cargas tóxicas ou inflamáveis.

No passado, entre outras funções estes fragmentos florestais eram reservas de caça dos proprietários (J. C. R. de Magalhães, com. pess.). Com a legislação de proteção à fauna essa atividade cessou, mas deve ter tido um papel no declínio local de certas espécies cinegéticas como o macuco *Tinamus solitarius* e o queixada *Tayassu pecari*. No período de 2000 e 2001, ao menos no Viraeiro, os proprietários exerciam forte vigilância que resultava no acionamento da Polícia Ambiental ao menor indício de caça. Contudo, foram observadas evidências da ação de caçadores, duas cevas com milho e mandioca, três pessoas acompanhadas por cães se deslocando nas bordas do

fragmento e um caçador preso pela polícia com cateto *Pecari tajacu* recém-abatido. Além deste episódio, encontramos em uma ocasião oito cartuchos plásticos calibre 12 deflagrados na margem esquerda do Piracicaba. As espécies-alvo desse tipo de munição variam com a quantidade de chumbo utilizada e podem ser patos, marrecos e mesmo capivaras *Hydrochoerus hydrochaeris*. Considerando que efetuamos 1.000h de esforço amostral no Viraeiro, pelos critérios adotados por Cullen Jr. et al. (2000) que classificaram áreas com 10 e 15 pontos como de baixa intensidade, a caça no período de estudo era pouco intensa, pois nossa pontuação total das variáveis de caça foi de seis. No entanto, devido ao fácil acesso de caçadores pela estrada e pelos rios, e a ausência de fiscalização ostensiva, a caça não pode ser desprezada como fator de impacto à fauna local, principalmente em sinergia a outros vetores de pressão e quando incide sobre populações reduzidas.

Também no passado, ocorria a captura de papagaios-verdadeiros *Amazona aestiva* e pássaros canoros para a gaiola. Um funcionário foi demitido ao ser descoberto com dezenas de pássaros capturados na área da fazenda Barreiro Rico (J. C. R. de Magalhães com. pess.). Esta atividade foi a responsável pelo declínio de espécies como o curió *Sporophila angolensis* e o pássaro-preto *Gnorimopsar chopi*.

Com exceção dos cães associados aos caçadores, não observamos cachorros e gatos vagando livremente pela área. O gado criado é destinado para a comercialização de matrizes e reprodutores, e há todo cuidado com a sanidade desses animais, o que diminui o risco de transmissão de doenças e parasitas para a fauna nativa (http://barreirorico.com.br/). Como discutido anteriormente, a espécie exótica com potencial de ser uma ameaça séria à fauna local é o javali/javaporco.

Foi relatada a instalação ocasional e ilegal de caixas de apicultura no interior da Estação Ecológica de Barreiro Rico. A abelha-africanizada *Apis mellifera* já está presente principalmente nas bordas dos fragmentos, mas a apicultura pode aumentar o número de colmeias, pois é frequente ocorrer o enxameamento na ausência de recursos mais próximos das caixas. Em relação aos vertebrados nativos, o principal impacto negativo destas abelhas é a ocupação de ocos de árvores para instalar a colméia, pois estes substratos também são utilizados como locais de abrigo e de nidificação por aves, mamíferos, pererecas, etc.

A soltura de aves exóticas foi observada no Tanquã. O esclarecimento da população local sobre os riscos de introdução de espécies para a fauna nativa deve ser efetivo para cessar esta atividade.

Outro potencial vetor de impacto à fauna que precisa ser melhor pesquisado na região é a intoxicação por agrotóxicos. A maioria dos estudos de campo consegue inferir a contaminação, que é a presença de agrotóxicos ou de seus resíduos no organismo (Valdes, 2010). A intoxicação é a produção de qualquer tipo de sintoma, inclusive alterações comportamentais, após o contato do animal com determinado princípio ativo (Valdes, 2010). A toxicidade vai variar tanto entre as espécies quanto entre os compostos químicos utilizados. As aves podem ser um bom modelo para avaliar o impacto de agrotóxicos, pois por apresentarem maior taxa metabólica podem se intoxicar mais rapidamente via cadeia alimentar e possuem níveis mais baixos de enzimas detoxificantes do que os mamíferos (Parker e Goldstein, 2000).

Na região, o plantio da cana-de-açúcar demanda mais agrotóxicos do que as pastagens e a silvicultura. Fizemos uma análise do potencial de intoxicação de alguns compostos autorizados para o cultivo da cana (AGROFIT, 2018), nos baseando na revisão de Valdes (2010). Os herbicidas utilizados, apesar de considerados menos tóxicos do que os inseticidas, apresentam grande solubilidade em água e alguns deles como a Ametrina e a Atrazina, grupo químico triazina, são amplamente registrados nos cursos d' água brasileiros. Em alta concentração no organismo eles atuam como disruptores endócrinos, ou seja, causam alterações hormonais (Valdes, 2010).

Os inseticidas constituem os agrotóxicos com maior potencial de causar impacto nos vertebrados, tanto por contaminação primária quanto via ingestão de organismos contaminados. Na cultura canavieira são utilizados, entre outros grupos químicos: 1) os piretróides, como a alfa-cipermetrina e a bifentrina, que apesar de baixa persistência ambiental, podem ser neurotóxicos para répteis, anfíbios e peixes; 2) organofosforados, como o cadusafós e o terbufós, que são pouco estáveis no ambiente, apresentam baixa taxa de dispersão e baixa capacidade de bioacumulação, mas que agem no sistema nervoso e estão implicados em mudanças comportamentais em aves e 3) ciclodienoclorados, como o endossulfam, que podem apresentar alta persistência no ambiente e tendência à bioacumulação.

4.4.4.2. Ecossistemas aquáticos

Nos abstivemos de discorrer sobre a quantidade e a qualidade da água do rio Piracicaba, mas é amplamente reconhecido o alto consumo de água a montante da área de estudo, pelas áreas urbanas e industriais, e em menor escala para irrigação de hortifrutigranjeiros, e a carga elevada de esgoto orgânico sem tratamento, agrotóxicos e vinhoto que chega ao rio. Os rejeitos industriais foram importantes

poluentes no passado, mas hoje recebem um controle rigoroso. Entretanto, metais pesados podem ter permanecido nos sedimentos.

Observamos dragas em atividade no rio Piracicaba (Figura 4.10). A extração de areia aumenta a turbidez da água, pode ocasionar a poluição do rio por combustíveis, lubrificantes, etc., e o ruído do maquinário pode resultar na evitação do entorno da área de exploração pela fauna. Por outro lado, diminui a sedimentação e colabora para manter trechos mais profundos no leito do rio, preferidos por algumas espécies de peixes. Chamou a atenção também, a grande quantidade de resíduos sólidos, principalmente garrafas PET, acumulada nas margens e nos bancos de areia (Figura 4.10). Não há estudo sobre os impactos sobre a fauna local da ingestão desse material ou do microplástico dele derivado.

A pesca é atividade econômica importante na região do Tanquã. No período de 2003-2004 o principal aparelho de pesca utilizado no baixo Piracicaba era a rede de emalhar, método de espera, com malhas variando entre 3 e 20cm (Maruyama, 2007). Para a região da barragem de Barra Bonita foi estimado um total de 100 pescadores em atividade no referido período, que juntos capturavam aproximadamente 960kg/pescado/mês (Maruyama, 2007). Essa produtividade era baseada nas espécies exóticas tilápia e corvina, que se beneficiam da alta produção primária resultante da carga de matéria orgânica originada nas cidades ao longo da bacia do rio Piracicaba. Naquele período, a atividade de pesca sobre estes estoques foi considerada sustentável e relevante economicamente para a população local (Maruyama, 2007). Contudo, havia a necessidade de uma melhor organização social, do estabelecimento de áreas delimitadas para a pesca profissional, para o turismo e lazer, de um melhor ordenamento pesqueiro, de monitoramento constante e de implantação de infraestrutura adequada ao desembarque, limpeza e conservação do pescado (Maruyama, 2007). Ações que pouco avanaçaram desde então.

As redes de malhas menores capturam indivíduos jovens, podendo impactar a população de certas espécies. Além disso, vertebrados aquáticos de respiração aérea podem ficar presos em redes de espera e se afogar. Em uma oportunidade, constatamos o descarte de um cágado-de-barbicha *Phrynops geoffroanus* morto, por um pescador que recolhia sua rede. O ordenamento pesqueiro deve considerar esses impactos potenciais e estabelecer o uso de apetrechos mais adequados para a conservação da biodiversidade e dos recursos pesqueiros. No Tanquã, a pesca e o trânsito de embarcações deveriam ser limitados ao curso principal do rio Piracicaba, deixando as lagoas marginais e canais secundários como refúgios da fauna.

Com o crescente interesse de observadores de aves pelo Tanquã, divulgado inclusive pelos meios de comunicação de massa (http://g1.globo.com/sp/campinas-regiao/terra-da-gente/noticia/2015/08/em-piracicaba-bairro-tanqua-e-um-paraiso-para-fauna-brasileira.html), alguns pescadores locais têm se capacitado para atuar como guias, reduzindo sua dependência econômica da atividade pesqueira.

Figura 4.10. Alguns vetores de degradação dos ecossistemas do Tanquã, extração de areia e resíduos plásticos.

4.4.5. Conclusões

A área de estudo apresenta riqueza considerável de espécies de vertebrados, 618, incluindo 37 táxons ameaçados de extinção, vários outros atualmente raros no interior do estado de São Paulo e 22 espécies de aves migratórias que se reproduzem na América do Norte. As Unidades de Conservação presentes na área, Estação Ecológica Barreiro Rico (292,82 ha) e Estação Ecológica de Ibicatu (76,40 ha), apresentam pequeno porte e são insuficientes para manter as populações de todas estas espécies (Figura 11). Os vetores de impacto negativo sobre a biodiversidade que estão atuando nos remanescentes naturais da área, acarretam na sua progressiva degradação e poderão comprometer sua resiliência, culminando em várias extinções locais e perda de serviços ecossistêmicos. Os habitats aquáticos estão completamente desprotegidos e sujeitos a outros vetores que se originam fora da área de estudo a vários quilômetros rio acima.

Dessa forma, entendemos que são fundamentais para a preservação da biodiversidade regional, por parte do poder público: 1) a implantação de novas unidades de conservação de maior porte, que assegurem a manutenção dos habitats naturais; 2) o estimulo e apoio ao setor produtivo para adoção de normas e procedimentos menos impactantes aos ecossistemas, principalmente à fauna, para efetuar ações de restauração ecológica e criar Reservas Particulares do Patrimônio Natural (RPPN) e 3) incentivo ao uso indireto dos recursos naturais, por exemplo por meio do ecoturismo. Esta última atividade está se desenvolvendo na região principalmente pela observação de aves e por iniciativa de proprietários de fazendas e dos pescadores de Tanquã.

Agradecimentos

Agradecemos ao Dr. Osvaldo Takeshi Oyakawa, do Museu de Zoologia da USP, pelas informações e revisão do texto sobre os peixes, e ao Rodrigo Antonio Braga Moraes Victor e ao Antônio Alvaro Buso Junior pela organização da visita de campo à área de estudo.

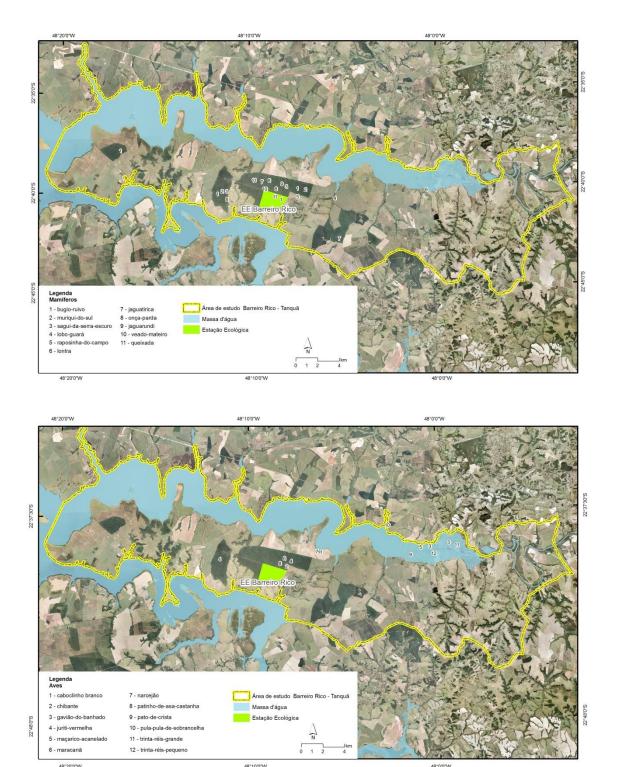


Figura 4.11. Pontos de registros de algumas espécies de mamíferos (acima) e aves ameçadas de extinção, ilustrando a necessidade de criação ou ampliação das unidades de conservação existentes na área de estudo.

Anexo 4 I. Mamíferos registrados na área de estudo. Ecossistemas de ocorrência: A – áreas úmidas; C – campos e F – florestas.

Nome do Táxon	Nome Popular	Ecossistemas	Referência
Classe Mammalia			
Ordem Didelphimorphia			
Família Didelphidae			
Caluromys sp.	cuíca-lanosa	F	Fazenda Bacury, 2018
Didelphis albiventris Lund, 1840	gambá-de-orelha-branca	F	Antunes & Eston, 2009
Didelphis aurita (Wied-Neuwied, 1826)	gambá-de-orelha-preta	F	d'Horta et al., 2013
Monodelphis kunsi Pine, 1975	catita	F	d'Horta et al., 2013
Gracilinanus microtarsus (Wagner, 1842)	cuíca	F	d'Horta et al., 2013
Ordem Cingulata			
Dasypodidae			
Dasypus novemcinctus Linnaeus, 1758	tatu-galinha	F	Antunes & Eston, 2009
Euphractus sexcinctus (Linnaeus, 1758)	tatu-peba	F	Antunes & Eston, 2009
Cabassous tatouay (Desmarest, 1804)	tatu-de-rabo-mole-grande	F	Antunes & Eston, 2009
Cabassous unicinctus (Linnaeus, 1758)	tatu-de-rabo-mole	F	d'Horta et al., 2013
Ordem Pilosa			
Myrmecophagidae			
Tamandua tetradactyla (Linnaeus, 1758)	tamanduá-mirim	F	Antunes & Eston, 2009
Ordem Primates			
Atelidae			
Alouatta guariba clamitans Cabrera, 1958	bugio-ruivo	F	Torres-de-Assumpção, 1983
Brachyteles arachnoides (É. Geoffroy, 1806)	muriqui-do-sul	F	Torres-de-Assumpção, 1981
Callitrichidae	•		
Callithrix aurita (É. Geoffroy in Humboldt, 1812)	sagui-da-serra-escuro	F	Torres-de-Assumpção, 1983
Cebidae	J		• •
Sapajus nigritus (Goldfuss, 1809)	macaco-prego	F	Torres-de-Assumpção, 1981
Pitheciidae			· ·

Nome do Táxon	Nome Popular	Ecossistemas	Referência
Callicebus nigrifrons (Spix, 1823)	sauá	F	Torres-de-Assumpção, 1983
Ordem Rodentia			
Caviidae			
Cavia aperea Erxleben, 1777	preá	С	Antunes & Eston, 2009
Hydrochoerus hydrochaeris (Linnaeus, 1766)	capivara	Α	Antunes & Eston, 2009
Cuniculidae			
Cuniculus paca (Linnaeus, 1766)	paca	F	Antunes & Eston, 2009
Dasyproctidae			
Dasyprocta azarae Lichtenstein, 1823	cutia	F	Antunes & Eston, 2009
Echimyidae			
Phyllomys nigrispinus (Wagner, 1842)	rato-da-árvore	F	d'Horta et al., 2013
Myocastor coypus (Molina, 1782)	ratão-do-banhado	Α	Antunes & Eston, 2009
Erethizontidae			
Coendou spinosus (F. Cuvier, 1823)	ouriço-cacheiro	F	Antunes & Eston, 2009
Cricetidae			
Akodon montensis Thomas, 1913	rato-do-chão	F	d'Horta et al., 2013
Cerradomys subflavus (Wagner, 1842)	rato-do-mato	С	Percequillo et al., 2008
Holochilus brasiliensis (Desmarest, 1819)	rato-d'água	Α	d'Horta et al., 2013
Necromys lasiurus (Lund, 1841)	rato-do-mato	С	d'Horta et al., 2013
Nectomys squamipes (Brants, 1827)	rato-d'água	Α	d'Horta et al., 2013
Oligoryzomys flavescens (Waterhouse, 1837)	rato-do-mato	F	d'Horta et al., 2013
Oligoryzomys nigripes (Olfers, 1818)	rato-do-mato	F	d'Horta et al., 2013
Calomys tener (Winge, 1887)	rato-do-mato	С	d'Horta et al., 2013
Sciuridae			
Guerlinguetus brasiliensis ingrami (Thomas, 1901)	serelepe	F	Antunes & Eston, 2009
Ordem Lagomorpha			
Leporidae			

Nome do Táxon	Nome Popular	Ecossistemas	Referência
Sylvilagus brasiliensis (Linnaeus, 1758)	tapeti	F	Antunes & Eston, 2009
Lepus europaeus Pallas, 1778	lebre	С	Antunes & Eston, 2009
Ordem Chiroptera			
Phyllostomidae			
Carollia perspicillata (Linnaeus, 1758)	morcego	F	d'Horta et al., 2013
Desmodus rotundus (Geoffroy, 1810)	morcego-vampiro	F	d'Horta et al., 2013
Anoura caudifer (Geoffroy, 1818)	morcego-beija-flor	F	d'Horta et al., 2013
Anoura geoffroyi Gray, 1838	morcego-beija-flor	F	d'Horta et al., 2013
Sturnira lilium (É. Geoffroy StHilaire, 1810)	morcego	F	d'Horta et al., 2013
Vespertilionidae			
Myotis nigricans (Schinz, 1821)	morcego	F	d'Horta et al., 2013
Ordem Carnivora			
Canidae			
Cerdocyon thous (Linnaeus, 1766)	cachorro-do-mato	F	Antunes & Eston, 2009
Chrysocyon brachyurus (Illiger, 1815)	lobo-guará	С	Antunes & Eston, 2009
Lycalopex vetulus (Lund, 1842)	raposinha-do-campo	С	d'Horta et al., 2013
Mustelidae			
Eira barbara (Linnaeus, 1758)	irara	F	Antunes & Eston, 2009
Galictis cuja (Molina, 1782)	furão-pequeno	F	Antunes & Eston, 2009
Lontra longicaudis (Olfers, 1818)	Iontra	Α	d'Horta et al., 2013
Procyonidae			
Nasua nasua (Linnaeus, 1766)	quati	F	Antunes & Eston, 2009
Procyon cancrivorus G. Cuvier, 1798	guaxinim	F	Antunes & Eston, 2009
Felidae			
Leopardus sp.	gato-do-mato	F	Antunes & Eston, 2009
Leopardus pardalis (Linnaeus, 1758)	jaguatirica	F	Antunes & Eston, 2009
Puma concolor (Linnaeus, 1771)	onça-parda	F	Antunes & Eston, 2009

Nome do Táxon	Nome Popular	Ecossistemas	Referência
Puma yagouaroundi (É. Geoffroy, 1803)	jaguarundi	F	Antunes & Eston, 2009
Ordem Cetartiodactyla			
Cervidae			
Mazama americana Erxleben, 1777	veado-mateiro	F	Antunes & Eston, 2009
Mazama gouazoubira Fischer, 1814	veado-catingueiro	F	Antunes & Eston, 2009
Tayassuidae			
Pecari tajacu (Linnaeus, 1758)	cateto	F	Antunes & Eston, 2009
Tayassu pecari (Link, 1795)	queixada	F	Antunes & Eston, 2009
Suidae			
Sus scrofa Linnaeus, 1758	javali ou javaporco	F	Informação de moradores locais

Anexo 4 II. Aves registradas na área de estudo. Ecossistemas de ocorrência: A - áreas úmidas, C – campos e F – florestas. Status: R – residentes; RM - reprodutivas migratórias; M – migratórias e O – ocasionais.

Nome do Táxon	Nome Popular	Ecossistemas	Status	Referência
Classe Aves				
Ordem Tinamiformes				
Família Tinamidae				
Tinamus solitarius (Vieillot, 1819)	macuco	F	R	Willis, 1979
Crypturellus obsoletus (Temminck, 1815)	inambuguaçu	F	R	Willis, 1979
Crypturellus parvirostris (Wagler, 1827)	inambu-chororó	С	R	Magalhães, 1999
Crypturellus tataupa (Temminck, 1815)	inambu-chintã	F	R	Willis, 1979
Rhynchotus rufescens (Temminck, 1815)	perdiz	С	R	Magalhães, 1999
Nothura maculosa (Temminck, 1815)	codorna-amarela	С	R	Magalhães, 1999
Anseriformes				
Anhimidae				
Anhima cornuta (Linnaeus, 1766)	anhuma	Α	R	Robinson & Pizo, 2017
Chauna torquata (Oken, 1816)	tachã	Α	Ο	Robinson & Pizo, 2017
Anatidae				
Dendrocygna bicolor (Vieillot, 1816)	marreca-caneleira	Α	R	Magalhães, 1999
Dendrocygna viduata (Linnaeus, 1766)	irerê	Α	R	Magalhães, 1999
Dendrocygna autumnalis (Linnaeus, 1758)	marreca-cabocla	Α	R	Magalhães, 1999
Coscoroba coscoroba (Molina, 1782)	capororoca	Α	Ο	Robinson & Pizo, 2017
Cairina moschata (Linnaeus, 1758)	pato-do-mato	Α	R	Willis, 1979
Sarkidiornis sylvicola Ihering & Ihering, 1907	pato-de-crista	Α	M	Magalhães, 1999
Amazonetta brasiliensis (Gmelin, 1789)	ananaí	Α	R	Magalhães, 1999
Anas georgica Gmelin, 1789	marreca-parda	Α	Ο	Robinson & Pizo, 2017
Anas bahamensis Linnaeus, 1758	marreca-toicinho	Α	R	Magalhães, 1999
Anas versicolor Vieillot, 1816	marreca-cricri	Α	М	Magalhães, 1999
Anas discors Linnaeus, 1766	marreca-de-asa-azul	Α	0	Robinson & Pizo, 2017

Anas platalea Vieillot, 1816	marreca-colhereira	Α	Ο	Robinson & Pizo, 2017
Netta erythrophthalma (Wied, 1833)	paturi-preta	Α	R	Robinson & Pizo, 2017
Netta peposaca (Vieillot, 1816)	marrecão	Α	R	Magalhães, 1999
Nomonyx dominicus (Linnaeus, 1766)	marreca-caucau	Α	R	Robinson & Pizo, 2017
Oxyura vittata (Philippi, 1860)	marreca-rabo-de-espinho	Α	Ο	Pinto, 2017
Galliformes				
Cracidae				
Penelope superciliaris Temminck, 1815	jacupemba	F	R	Willis, 1979
Odontophoridae				
Odontophorus capueira (Spix, 1825)	uru	F	R	Willis, 1979
Podicipediformes				
Podicipedidae				
Tachybaptus dominicus (Linnaeus, 1766)	mergulhão-pequeno	Α	R	Magalhães, 1999
Podilymbus podiceps (Linnaeus, 1758)	mergulhão-caçador	Α	R	Magalhães, 1999
Podicephorus major (Boddaert, 1783)	mergulhão-grande	Α	Ο	Robinson & Pizo, 2017
Ciconiiformes				
Ciconiidae				
Ciconia maguari (Gmelin, 1789)	maguari	Α	M	Magalhães, 1999
Jabiru mycteria (Lichtenstein, 1819)	tuiuiú	Α	M	Antunes & Willis, 2003
Mycteria americana Linnaeus, 1758	cabeça-seca	Α	M	Magalhães, 1999
Suliformes				
Phalacrocoracidae				
Nannopterum brasilianus (Gmelin, 1789)	biguá	Α	R	Magalhães, 1999
Anhingidae				
Anhinga anhinga (Linnaeus, 1766)	biguatinga	Α	R	Magalhães, 1999
Pelecaniformes				
Ardeidae				
Tigrisoma lineatum (Boddaert, 1783)	socó-boi	Α	R	Antunes & Willis, 2003

Ixobrychus involucris (Vieillot, 1823)	socoí-amarelo	Α	R	Robinson & Pizo, 2017
Nycticorax nycticorax (Linnaeus, 1758)	socó-dorminhoco	Α	R	Magalhães, 1999
Butorides striata (Linnaeus, 1758)	socozinho	Α	R	Magalhães, 1999
Bubulcus ibis (Linnaeus, 1758)	garça-vaqueira	С	R	Magalhães, 1999
Ardea cocoi Linnaeus, 1766	garça-moura	Α	R	Magalhães, 1999
Ardea alba Linnaeus, 1758	garça-branca	Α	R	Magalhães, 1999
Syrigma sibilatrix (Temminck, 1824)	maria-faceira	С	R	Magalhães, 1999
Egretta thula (Molina, 1782)	garça-branca-pequena	Α	R	Magalhães, 1999
Egretta caerulea (Linnaeus, 1758)	garça-azul	Α	M	Robinson & Pizo, 2017
Threskiornithidae				
Plegadis chihi (Vieillot, 1817)	caraúna	Α	M	Magalhães, 1999
Mesembrinibis cayennensis (Gmelin, 1789)	coró-coró	Α	R	Antunes & Willis, 2003
Phimosus infuscatus (Lichtenstein, 1823)	tapicuru	Α	R	Robinson & Pizo, 2017
Theristicus caudatus (Boddaert, 1783)	curicaca	С	R	Magalhães, 1999
Platalea ajaja Linnaeus, 1758	colhereiro	Α	M	Magalhães, 1999
Cathartiformes				
Cathartidae				
Cathartes aura (Linnaeus, 1758)	urubu-de-cabeça-vermelha	С	R	Willis, 1979
Cathartes burrovianus Cassin, 1845	urubu-de-cabeça-amarela	С	R	Panucci, 2012
Coragyps atratus (Bechstein, 1793)	urubu	С	R	Willis, 1979
Sarcoramphus papa (Linnaeus, 1758)	urubu-rei	F	R	Willis, 1979
Accipitriformes				
Pandionidae				
Pandion haliaetus (Linnaeus, 1758)	águia-pescadora	Α	M	Magalhães, 1999
Accipitridae				
Leptodon cayanensis (Latham, 1790)	gavião-gato	F	RM	Willis, 1979
Elanus leucurus (Vieillot, 1818)	gavião-peneira	С	R	Magalhães, 1999
Harpagus diodon (Temminck, 1823)	gavião-bombachinha	F	RM	Willis, 1979

gavião-do-banhado	Α	М	Robinson & Pizo, 2017
tauató-miúdo	F	R	Willis & Oniki, 2003
sovi	F	RM	Willis, 1979
gavião-belo	Α	М	Magalhães, 1999
gavião-caramujeiro	Α	RM	Magalhães, 1999
gavião-pernilongo	F	R	C. L. Reis de Magalhães, foto
gavião-caboclo	С	R	Willis, 1979
gavião-preto	С	R	Magalhães, 1999
gavião-carijó	F	R	Willis, 1979
gavião-asa-de-telha	С	R	Costa, 2016
gavião-de-rabo-branco	С	R	d'Horta et al., 2013
gavião-de-cauda-curta	F	R	Willis, 1979
carão	Α	R	Magalhães, 1999
saracura-três-potes	Α	R	Magalhães, 1999
sanã-parda	Α	R	Magalhães, 1999
sanã-do-capim	Α	R	Robinson & Pizo, 2017
sanã-amarela	Α	R	Robinson & Pizo, 2017
sanã-carijó	Α	R	Magalhães, 1999
saracura-carijó	Α	R	Robinson & Pizo, 2017
saracura-sanã	Α	R	Magalhães, 1999
saracura-do-banhado	Α	R	Magalhães, 1999
galinha-d'água	Α	R	Magalhães, 1999
frango-d'água-azul	Α	R	Magalhães, 1999
frango-d'água-pequeno	Α	M	Robinson & Pizo, 2017
	tauató-miúdo sovi gavião-belo gavião-caramujeiro gavião-pernilongo gavião-caboclo gavião-preto gavião-carijó gavião-asa-de-telha gavião-de-rabo-branco gavião-de-cauda-curta carão saracura-três-potes sanã-parda sanã-do-capim sanã-amarela sanã-carijó saracura-carijó saracura-sanã saracura-do-banhado galinha-d'água frango-d'água-azul	tauató-miúdo F sovi F gavião-belo A gavião-caramujeiro A gavião-pernilongo F gavião-caboclo C gavião-caboclo C gavião-carijó F gavião-asa-de-telha C gavião-de-rabo-branco C gavião-de-cauda-curta F carão A saracura-três-potes A sanã-parda A sanã-do-capim A sanã-amarela A sanã-carijó A saracura-carijó A saracura-carijó A saracura-carijó A saracura-carijó A saracura-do-banhado A galinha-d'água A frango-d'água-azul A	tauató-miúdo F R R Sovi F RM gavião-belo A M M gavião-belo A RM gavião-pernilongo F R R gavião-casamujeiro A RM gavião-pernilongo F R R gavião-caboclo C R gavião-carijó F R R gavião-de-rabo-branco C R gavião-de-rabo-branco C R gavião-de-cauda-curta F R R R Saracura-três-potes A R Sanã-parda A R R Sanã-amarela A R Saracura-carijó A R R Saracura-carijó A R R Saracura-sanã A R Saracura-sanã A R R Saracura-do-banhado A R R Saracura-do-banhado A R R Saracura-d'água A R R R R R R R R R R R R R R R R R R

Charadriiformes

Charadriidae				
Vanellus chilensis (Molina, 1782)	quero-quero	С	R	Magalhães, 1999
Pluvialis dominica (Statius Muller, 1776)	batuiruçu	Α	M	Magalhães, 1999
Charadrius semipalmatus Bonaparte, 1825	batuíra-de-bando	Α	M	Robinson & Pizo, 2017
Charadrius collaris Vieillot, 1818	batuíra-de-coleira	Α	M	Robinson & Pizo, 2017
Recurvirostridae				
Himantopus melanurus Vieillot, 1817	pernilongo-de-costas-brancas	Α	R	Magalhães, 1999
Scolopacidae				
Gallinago paraguaiae (Vieillot, 1816)	narceja	Α	R	Magalhães, 1999
Gallinago undulata (Boddaert, 1783)	narcejão	С	R	Magalhães, 1999
Limosa haemastica (Linnaeus, 1758)	maçarico-de-bico-virado	Α	M	Robinson & Pizo, 2017
Actitis macularius (Linnaeus, 1766)	maçarico-pintado	Α	M	Magalhães, 1999
Tringa solitaria Wilson, 1813	maçarico-solitário	Α	M	Magalhães, 1999
Tringa melanoleuca (Gmelin, 1789)	maçarico-grande-de-perna-amarela	Α	M	Magalhães, 1999
Tringa flavipes (Gmelin, 1789)	maçarico-de-perna-amarela	Α	M	Magalhães, 1999
Calidris fuscicollis (Vieillot, 1819)	maçarico-de-sobre-branco	Α	M	Magalhães, 1999
Calidris melanotos (Vieillot, 1819)	maçarico-de-colete	Α	M	Magalhães, 1999
Calidris himantopus (Bonaparte, 1826)	maçarico-pernilongo	Α	O(M)	d'Horta et al., 2013
Calidris subruficollis (Vieillot, 1819)	maçarico-acanelado	Α	M	Robinson & Pizo, 2017
Calidris pugnax (Linnaeus, 1758)	combatente	Α	O(M)	Robinson & Pizo, 2017
Phalaropus tricolor (Vieillot, 1819)	pisa-n'água	Α	M	Robinson & Pizo, 2017
Jacanidae				
Jacana jacana (Linnaeus, 1766)	jaçanã	Α	R	Magalhães, 1999
Rostratulidae				
Nycticryphes semicollaris (Vieillot, 1816)	narceja-de-bico-torto	Α	O?	Magalhães, 1999
Laridae				
Chroicocephalus maculipennis (Lichtenstein, 1823)	gaivota-maria-velha	Α	0	Robinson & Pizo, 2017

Sternidae				
Sternula superciliaris (Vieillot, 1819)	trinta-réis-pequeno	Α	M	Robinson & Pizo, 2017
Phaetusa simplex (Gmelin, 1789)	trinta-réis-grande	Α	M	Magalhães, 1999
Rynchopidae				
Rynchops niger Linnaeus, 1758	talha-mar	Α	M	Magalhães, 1999
Columbiformes				
Columbidae				
Columbina talpacoti (Temminck, 1810)	rolinha	С	R	Willis, 1979
Columbina squammata (Lesson, 1831)	fogo-apagou	С	R	Magalhães, 1999
Claravis pretiosa (Ferrari-Perez, 1886)	pararu-azul	F	R	Willis, 1979
Columba livia Gmelin, 1789	pombo-doméstico	С	R	d'Horta et al., 2013
Patagioenas picazuro (Temminck, 1813)	asa-branca	F	R	Magalhães, 1999
Patagioenas cayennensis (Bonnaterre, 1792)	pomba-galega	F	R	Willis, 1979
Patagioenas plumbea (Vieillot, 1818)	pomba-amargosa	F	R	Willis, 1979
Zenaida auriculata (Des Murs, 1847)	avoante	С	R	Magalhães, 1999
Leptotila verreauxi Bonaparte, 1855	juriti-pupu	F	R	Willis, 1979
Leptotila rufaxilla (Richard & Bernard, 1792)	juriti-de-testa-branca	F	R	d'Horta et al., 2013
Geotrygon violacea (Temminck, 1809)	juriti-vermelha	F	R	Willis, 1979
Geotrygon montana (Linnaeus, 1758)	pariri	F	R	Willis, 1979
Cuculiformes				
Cuculidae				
Piaya cayana (Linnaeus, 1766)	alma-de-gato	F	R	Willis, 1979
Coccyzus melacoryphus Vieillot, 1817	papa-lagarta	F	RM	Willis, 1979
Coccyzus americanus (Linnaeus, 1758)	papa-lagarta-de-asa-vermelha	F	M	Willis & Oniki, 2003
Coccyzus euleri Cabanis, 1873	papa-lagarta-de-euler	F	RM	Willis, 1979
Crotophaga major Gmelin, 1788	anu-coroca	Α	RM	Magalhães, 1999
Crotophaga ani Linnaeus, 1758	anu-preto	С	R	Willis, 1979
Guira guira (Gmelin, 1788)	anu-branco	С	R	Willis, 1979

Tapera naevia (Linnaeus, 1766)	saci	F	R	Willis, 1979
Dromococcyx pavoninus Pelzeln, 1870	peixe-frito-pavonino	F	R	Willis, 1979
Strigiformes				
Tytonidae				
Tyto furcata (Temminck, 1827)	suindara	С	R	Magalhães, 1999
Strigidae				
Megascops choliba (Vieillot, 1817)	corujinha-do-mato	F	R	Willis, 1979
Megascops atricapilla (Temminck, 1822)	corujinha-sapo	F	R	Willis, 1979
Pulsatrix koeniswaldiana (Bertoni & Bertoni, 1901)	murucututu-de-barriga-amarela	F	R	Magalhães, 1999
Bubo virginianus (Gmelin, 1788)	jacurutu	F	R	Bovo, 2013
Strix virgata (Cassin, 1849)	coruja-do-mato	F	R	Magalhães, 1999
Glaucidium brasilianum (Gmelin, 1788)	caburé	F	R	Willis, 1979
Athene cunicularia (Molina, 1782)	coruja-buraqueira	С	R	Magalhães, 1999
Asio clamator (Vieillot, 1808)	coruja-orelhuda	F	R	Magalhães, 1999
Asio stygius (Wagler, 1832)	mocho-diabo	F	R	Fazenda Bacury, 2018
Nyctibiiformes				
Nyctibiidae				
Nyctibius griseus (Gmelin, 1789)	urutau	F	R	Willis, 1979
Caprimulgiformes				
Caprimulgidae				
Nyctiphrynus ocellatus (Tschudi, 1844)	bacurau-ocelado	F	R	Willis, 1979
Antrostomus rufus (Boddaert, 1783)	joão-corta-pau	F	R	Willis, 1979
Lurocalis semitorquatus (Gmelin, 1789)	tuju	F	RM	Willis, 1979
Nyctidromus albicollis (Gmelin, 1789)	bacurau	F	R	Willis, 1979
Hydropsalis parvula (Gould, 1837)	bacurau-chintã	F	RM	Magalhães, 1999
Hydropsalis maculicaudus (Lawrence, 1862)	bacurau-de-rabo-maculado	С	R	Antunes & Willis, 2003
Hydropsalis torquata (Gmelin, 1789)	bacurau-tesoura	F	R	Magalhães, 1999
Podager nacunda (Vieillot, 1817)	corucão	С	RM	Magalhães, 1999

Chordeiles minor (Forster, 1771)	bacurau-norte-americano	С	М	Magalhães, 1999
Chordeiles acutipennis (Hermann, 1783)	bacurau-de-asa-fina	С	RM	Magalhães, 1999
Apodiformes				
Apodidae				
Cypseloides fumigatus (Streubel, 1848)	taperuçu-preto	F	R	Willis, 1979
Streptoprocne zonaris (Shaw, 1796)	taperuçu-de-coleira-branca	F	R	Willis, 1979
Chaetura meridionalis Hellmayr, 1907	andorinhão-do-temporal	С	RM	Willis, 1979
Trochilidae				
Phaethornis pretrei (Lesson & Delattre, 1839)	rabo-branco-acanelado	F	R	Willis, 1979
Eupetomena macroura (Gmelin, 1788)	beija-flor-tesoura	С	R	Willis, 1979
Aphantochroa cirrochloris (Vieillot, 1818)	beija-flor-cinza	F	R	Willis, 1979
Florisuga fusca (Vieillot, 1817)	beija-flor-preto	F	М	Willis, 1979
Colibri serrirostris (Vieillot, 1816)	beija-flor-de-orelha-violeta	С	R	Willis, 1979
Anthracothorax nigricollis (Vieillot, 1817)	beija-flor-de-veste-preta	F	RM	Willis, 1979
Chrysolampis mosquitus (Linnaeus, 1758)	beija-flor-vermelho	С	0	Magalhães, 1999
Chlorostilbon lucidus (Shaw, 1812)	besourinho-de-bico-vermelho	С	R	Willis, 1979
Thalurania glaucopis (Gmelin, 1788)	beija-flor-de-fronte-violeta	F	R	Willis, 1979
Hylocharis chrysura (Shaw, 1812)	beija-flor-dourado	F	R	Magalhães, 1999
Leucochloris albicollis (Vieillot, 1818)	beija-flor-de-papo-branco	F	М	Willis, 1979
Polytmus guainumbi (Pallas, 1764)	beija-flor-de-bico-curvo	С	R	Magalhães, 1999
Amazilia versicolor (Vieillot, 1818)	beija-flor-de-banda-branca	F	R	Willis, 1979
Amazilia lactea (Lesson, 1832)	beija-flor-de-peito-azul	С	R	Willis, 1979
Heliomaster squamosus (Temminck, 1823)	bico-reto-de-banda-branca	F	R	Willis, 1979
Calliphlox amethystina (Boddaert, 1783)	estrelinha-ametista	F	R	Magalhães, 1999
Trogoniformes				
Trogonidae				
Trogon surrucura Vieillot, 1817	surucuá-variado	F	R	Willis, 1979
Trogon rufus Gmelin, 1788	surucuá-dourado	F	R	Willis, 1979

Coraciiformes				
Alcedinidae				
Megaceryle torquata (Linnaeus, 1766)	martim-pescador-grande	Α	R	Magalhães, 1999
Chloroceryle amazona (Latham, 1790)	martim-pescador-verde	Α	R	Magalhães, 1999
Chloroceryle americana (Gmelin, 1788)	martim-pescador-pequeno	Α	R	Magalhães, 1999
Momotidae				
Baryphthengus ruficapillus (Vieillot, 1818)	juruva	F	R	Willis, 1979
Galbuliformes				
Galbulidae				
Galbula ruficauda Cuvier, 1816	ariramba	F	R	d'Horta et al., 2013
Bucconidae				
Notharchus swainsoni (Gray, 1846)	macuru-de-barriga-castanha	F	R	Willis, 1979
Nystalus chacuru (Vieillot, 1816)	joão-bobo	С	R	Pinto, 2017
Malacoptila striata (Spix, 1824)	barbudo-rajado	F	R	Willis, 1979
Nonnula rubecula (Spix, 1824)	macuru	F	R	Willis, 1979
Piciformes				
Ramphastidae				
Ramphastos toco Statius Muller, 1776	tucanuçu	F	R	Willis, 1979
Ramphastos dicolorus Linnaeus, 1766	tucano-de-bico-verde	F	R	Willis, 1979
Selenidera maculirostris (Lichtenstein, 1823)	araçari-poca	F	R	Willis, 1979
Pteroglossus bailloni (Vieillot, 1819)	araçari-banana	F	R	Willis, 1979
Picidae				
Picumnus cirratus Temminck, 1825	picapauzinho-barrado	F	R	Willis, 1979
Picumnus temminckii Lafresnaye, 1845	picapauzinho-de-coleira	F	R	Willis & Oniki, 2003
Picumnus albosquamatus d'Orbigny, 1840	picapauzinho-escamoso	F	R	Willis, 1979
Melanerpes candidus (Otto, 1796)	pica-pau-branco	F	R	Willis, 1979
Melanerpes flavifrons (Vieillot, 1818)	benedito-de-testa-amarela	F	R	Willis, 1979
Veniliornis passerinus (Linnaeus, 1766)	pica-pau-pequeno	F	R	Willis, 1979

Veniliornis spilogaster (Wagler, 1827)	picapauzinho-verde-carijó	F	R	Willis, 1979
Piculus flavigula (Boddaert, 1783)	pica-pau-bufador	F	R	Willis, 1979
Colaptes melanochloros (Gmelin, 1788)	pica-pau-verde-barrado	F	R	Willis, 1979
Colaptes campestris (Vieillot, 1818)	pica-pau-do-campo	С	R	Magalhães, 1999
Celeus flavescens (Gmelin, 1788)	pica-pau-de-cabeça-amarela	F	R	Willis, 1979
Dryocopus lineatus (Linnaeus, 1766)	pica-pau-de-banda-branca	F	R	Willis, 1979
Campephilus robustus (Lichtenstein, 1818)	pica-pau-rei	F	R	Willis, 1979
Cariamiformes				
Cariamidae				
Cariama cristata (Linnaeus, 1766)	seriema	С	R	Magalhães, 1999
Falconiformes				
Falconidae				
Caracara plancus (Miller, 1777)	carcará	С	R	Willis, 1979
Milvago chimachima (Vieillot, 1816)	carrapateiro	С	R	Willis, 1979
Herpetotheres cachinnans (Linnaeus, 1758)	acauã	F	R	Willis, 1979
Micrastur ruficollis (Vieillot, 1817)	falcão-caburé	F	R	Willis, 1979
Micrastur semitorquatus (Vieillot, 1817)	falcão-relógio	F	R	Willis & Oniki, 2003
Falco sparverius Linnaeus, 1758	quiriquiri	С	R	Magalhães, 1999
Falco femoralis Temminck, 1822	falcão-de-coleira	С	R	Magalhães, 1999
Falco peregrinus Tunstall, 1771	falcão-peregrino	С	M	d'Horta et al., 2013
Psittaciformes				
Psittacidae				
Primolius maracana (Vieillot, 1816)	maracanã	F	R	Willis, 1979
Psittacara leucophthalmus (Statius Muller, 1776)	periquitão	F	R	Willis, 1979
Pyrrhura frontalis (Vieillot, 1817)	tiriba	F	R	Willis, 1979
Forpus xanthopterygius (Spix, 1824)	tuim	F	R	Willis, 1979
Brotogeris chiriri (Vieillot, 1818)	periquito-de-encontro-amarelo	F	R	d'Horta et al., 2013
Pionus maximiliani (Kuhl, 1820)	maitaca	F	R	Willis, 1979

Amazona aestiva (Linnaeus, 1758)	papagaio	F	R	Willis, 1979
Triclaria malachitacea (Spix, 1824)	sabiá-cica	F	R	Willis, 1979
Passeriformes				
Thamnophilidae				
Terenura maculata (Wied, 1831)	zidedê	F	R	Willis, 1979
Formicivora rufa (Wied, 1831)	papa-formiga-vermelho	С	R	Antunes & Willis, 2003
Dysithamnus stictothorax (Temminck, 1823)	choquinha-de-peito-pintado	F	R	Willis, 1979
Dysithamnus mentalis (Temminck, 1823)	choquinha-lisa	F	R	Willis, 1979
Herpsilochmus rufimarginatus (Temminck, 1822)	chorozinho-de-asa-vermelha	F	R	Willis, 1979
Thamnophilus doliatus (Linnaeus, 1764)	choca-barrada	F	R	Willis, 1979
Thamnophilus ruficapillus Vieillot, 1816	choca-de-chapéu-vermelho	С	R	Magalhães, 1999
Thamnophilus caerulescens Vieillot, 1816	choca-da-mata	F	R	Willis, 1979
Taraba major (Vieillot, 1816)	choró-boi	F	R	d'Horta et al., 2013
Hypoedaleus guttatus (Vieillot, 1816)	chocão-carijó	F	R	Willis, 1979
Mackenziaena severa (Lichtenstein, 1823)	borralhara	F	R	Willis, 1979
Myrmoderus squamosus (Pelzeln, 1868)	papa-formiga-de-grota	F	R	Willis, 1979
Pyriglena leucoptera (Vieillot, 1818)	papa-taoca-do-sul	F	R	Willis, 1979
Drymophila ferruginea (Temminck, 1822)	trovoada	F	R	Willis, 1979
Drymophila ochropyga (Hellmayr, 1906)	choquinha-de-dorso-vermelho	F	R	Willis, 1979
Conopophagidae				
Conopophaga lineata (Wied, 1831)	chupa-dente	F	R	Willis, 1979
Conopophaga melanops (Vieillot, 1818)	cuspidor-de-máscara-preta	F	R	Willis, 1979
Rhinocryptidae				
Psilorhamphus guttatus (Ménétriès, 1835)	tapaculo-pintado	F	R	Willis, 1979
Formicariidae				
Chamaeza campanisona (Lichtenstein, 1823)	tovaca-campainha	F	R	Willis, 1979
Scleruridae				
Sclerurus scansor (Ménétriès, 1835)	vira-folha	F	R	Willis, 1979

Dendrocolaptidae				
Dendrocincla turdina (Lichtenstein, 1820)	arapaçu-liso	F	R	Willis, 1979
Sittasomus griseicapillus (Vieillot, 1818)	arapaçu-verde	F	R	Willis, 1979
Xiphorhynchus fuscus (Vieillot, 1818)	arapaçu-rajado	F	R	Willis, 1979
Campylorhamphus falcularius (Vieillot, 1822)	arapaçu-de-bico-torto	F	R	Willis, 1979
Lepidocolaptes angustirostris (Vieillot, 1818)	arapaçu-de-cerrado	F	R	Magalhães, 1999
Dendrocolaptes platyrostris Spix, 1825	arapaçu-grande	F	R	Willis, 1979
Xiphocolaptes albicollis (Vieillot, 1818)	arapaçu-de-garganta-branca	F	R	Willis, 1979
Xenopidae				
Xenops minutus (Sparrman, 1788)	bico-virado-miúdo	F	R	Willis, 1979
Xenops rutilans Temminck, 1821	bico-virado-carijó	F	R	Willis, 1979
Furnariidae				
Furnarius rufus (Gmelin, 1788)	joão-de-barro	С	R	Magalhães, 1999
Lochmias nematura (Lichtenstein, 1823)	joão-porca	F	R	Magalhães, 1999
Clibanornis rectirostris (Wied, 1831)	cisqueiro-do-rio	F	R	d'Horta et al., 2013
Automolus leucophthalmus (Wied, 1821)	barranqueiro-de-olho-branco	F	R	Willis, 1979
Anabacerthia lichtensteini (Cabanis & Heine, 1859)	limpa-folha-ocráceo	F	R	Willis, 1979
Philydor atricapillus (Wied, 1821)	limpa-folha-coroado	F	R	Willis, 1979
Phacellodomus ferrugineigula (Pelzeln, 1858)	joão-botina-do-brejo	Α	R	Magalhães, 1999
Anumbius annumbi (Vieillot, 1817)	cochicho	С	R	Magalhães, 1999
Certhiaxis cinnamomeus (Gmelin, 1788)	curutié	Α	R	Magalhães, 1999
Synallaxis ruficapilla Vieillot, 1819	pichororé	F	R	Willis, 1979
Synallaxis frontalis Pelzeln, 1859	petrim	F	R	Willis, 1979
Synallaxis albescens Temminck, 1823	uí-pi	С	R	Magalhães, 1999
Synallaxis spixi Sclater, 1856	joão-teneném	F	R	Willis, 1979
Cranioleuca vulpina (Pelzeln, 1856)	arredio-do-rio	F	R	Robinson & Pizo, 2017
Pipridae				
Manacus manacus (Linnaeus, 1766)	rendeira	F	R	Willis, 1979

Chiroxiphia caudata (Shaw & Nodder, 1793)	tangará	F	R	Willis, 1979
Antilophia galeata (Lichtenstein, 1823)	soldadinho	F	R	Willis, 1979
Oxyruncidae				
Oxyruncus cristatus Swainson, 1821	araponga-do-horto	F	R	Willis, 1979
Onychorhynchidae				
Myiobius atricaudus Lawrence, 1863	assanhadinho-de-cauda-preta	F	R	Willis, 1979
Tityridae				
Schiffornis virescens (Lafresnaye, 1838)	flautim	F	R	Willis, 1979
Laniisoma elegans (Thunberg, 1823)	chibante	F	M	Willis, 1979
Tityra inquisitor (Lichtenstein, 1823)	anambé-branco-de-bochecha-parda	F	R	Willis, 1979
Tityra cayana (Linnaeus, 1766)	anambé-branco-de-rabo-preto	F	R	Willis, 1979
Pachyramphus viridis (Vieillot, 1816)	caneleiro-verde	F	M	Willis, 1979
Pachyramphus castaneus (Jardine & Selby, 1827)	caneleiro	F	M	Willis, 1979
Pachyramphus polychopterus (Vieillot, 1818)	caneleiro-preto	F	RM	Willis, 1979
Pachyramphus validus (Lichtenstein, 1823)	caneleiro-de-chapéu-preto	F	RM	Willis, 1979
Cotingidae				
Phibalura flavirostris Vieillot, 1816	tesourinha-da-mata	F	M	Willis, 1979
Pyroderus scutatus (Shaw, 1792)	pavó	F	R	Willis, 1979
Lipaugus lanioides (Lesson, 1844)	tropeiro-da-serra	F	R	Willis, 1979
Procnias nudicollis (Vieillot, 1817)	araponga	F	R	Willis, 1979
Pipritidae				
Piprites chloris (Temminck, 1822)	papinho-amarelo	F	R	Willis, 1979
Platyrinchidae				
Platyrinchus mystaceus Vieillot, 1818	patinho	F	R	Willis, 1979
Platyrinchus leucoryphus Wied, 1831	patinho-de-asa-castanha	F	R	Willis, 1979
Rhynchocyclidae				
Mionectes rufiventris Cabanis, 1846	abre-asa-de-cabeça-cinza	F	R	Willis, 1979
Leptopogon amaurocephalus Tschudi, 1846	cabeçudo	F	R	Willis, 1979

Corythopis delalandi (Lesson, 1830)	estalador	F	R	Willis, 1979
Tolmomyias sulphurescens (Spix, 1825)	bico-chato-de-orelha-preta	F	R	Willis, 1979
Todirostrum poliocephalum (Wied, 1831)	teque-teque	F	R	Willis, 1979
Todirostrum cinereum (Linnaeus, 1766)	ferreirinho-relógio	F	R	Willis, 1979
Poecilotriccus plumbeiceps (Lafresnaye, 1846)	tororó	F	R	Willis, 1979
Myiornis auricularis (Vieillot, 1818)	miudinho	F	R	Willis, 1979
Hemitriccus diops (Temminck, 1822)	olho-falso	F	R	Willis, 1979
Hemitriccus orbitatus (Wied, 1831)	tiririzinho-do-mato	F	R	Willis, 1979
Hemitriccus nidipendulus (Wied, 1831)	tachuri-campainha	F	R	Willis, 1979
Tyrannidae				
Hirundinea ferruginea (Gmelin, 1788)	gibão-de-couro	С	M	Antunes & Willis, 2003
Euscarthmus meloryphus Wied, 1831	barulhento	С	R	Magalhães, 1999
Camptostoma obsoletum (Temminck, 1824)	risadinha	F	R	Willis, 1979
Elaenia flavogaster (Thunberg, 1822)	guaracava-de-barriga-amarela	F	R	Willis, 1979
Elaenia spectabilis Pelzeln, 1868	guaracava-grande	F	M	Magalhães, 1999
Elaenia chilensis Hellmayr, 1927	guaracava-de-crista-branca	F	M	Willis, 1979
Elaenia parvirostris Pelzeln, 1868	tuque-pium	F	M	Willis & Oniki, 2003
Elaenia mesoleuca (Deppe, 1830)	tuque	F	M	Willis, 1979
Elaenia chiriquensis Lawrence, 1865	chibum	С	RM	Magalhães, 1999
Elaenia obscura (d'Orbigny & Lafresnaye, 1837)	tucão	F	R	Magalhães, 1999
Myiopagis caniceps (Swainson, 1835)	guaracava-cinzenta	F	R	Willis, 1979
Myiopagis viridicata (Vieillot, 1817)	guaracava-de-crista-alaranjada	F	RM	Willis, 1979
Capsiempis flaveola (Lichtenstein, 1823)	marianinha-amarela	F	R	Willis, 1979
Phaeomyias murina (Spix, 1825)	bagageiro	F	R	Magalhães, 1999
Phyllomyias virescens (Temminck, 1824)	piolhinho-verdoso	F	0	Antunes & Willis, 2003
Phyllomyias fasciatus (Thunberg, 1822)	piolhinho	F	R	Magalhães, 1999
Phyllomyias griseocapilla Sclater, 1862	piolhinho-serrano	F	0	Magalhães, 1999
Pseudocolopteryx sclateri (Oustalet, 1892)	tricolino	Α	R	Robinson & Pizo, 2017

Serpophaga nigricans (Vieillot, 1817)	joão-pobre	Α	R	Frezza, 2015
Serpophaga subcristata (Vieillot, 1817)	alegrinho	F	R	Magalhães, 1999
Attila rufus (Vieillot, 1819)	capitão-de-saíra	F	M	Magalhães, 1999
Legatus leucophaius (Vieillot, 1818)	bem-te-vi-pirata	F	M	Willis, 1979
Myiarchus swainsoni Cabanis & Heine, 1859	irré	F	RM	Willis, 1979
Myiarchus ferox (Gmelin, 1789)	maria-cavaleira	F	R	Willis, 1979
Myiarchus tyrannulus (Statius Muller, 1776)	maria-cavaleira-de-rabo-enferrujado	F	R	Willis, 1979
Sirystes sibilator (Vieillot, 1818)	gritador	F	R	Willis, 1979
Casiornis rufus (Vieillot, 1816)	maria-ferrugem	F	M	Antunes & Willis, 2003
Pitangus sulphuratus (Linnaeus, 1766)	bem-te-vi	F	R	Willis, 1979
Machetornis rixosa (Vieillot, 1819)	suiriri-cavaleiro	С	R	Magalhães, 1999
Myiodynastes maculatus (Statius Muller, 1776)	bem-te-vi-rajado	F	RM	Willis, 1979
Megarynchus pitangua (Linnaeus, 1766)	neinei	F	R	Willis, 1979
Myiozetetes similis (Spix, 1825)	bentevizinho-de-penacho-vermelho	F	R	Willis, 1979
Tyrannus melancholicus Vieillot, 1819	suiriri	F	RM	Willis, 1979
Tyrannus savana Daudin, 1802	tesourinha	С	RM	Magalhães, 1999
Griseotyrannus aurantioatrocristatus (d'Orbigny &		Г	NA	Catal 2017
Lafresnaye, 1837)	peitica-de-chapéu-preto	F	M	Catel, 2017
Empidonomus varius (Vieillot, 1818)	peitica	F	RM	Willis, 1979
Colonia colonus (Vieillot, 1818)	viuvinha	F _	R	Willis, 1979
Myiophobus fasciatus (Statius Muller, 1776)	filipe	F	R	Willis, 1979
Pyrocephalus rubinus (Boddaert, 1783)	príncipe	С	M	Magalhães, 1999
Fluvicola albiventer (Spix, 1825)	lavadeira-de-cara-branca	Α	R	Magalhães, 1999
Fluvicola nengeta (Linnaeus, 1766)	lavadeira-mascarada	Α	R	Robinson & Pizo, 2017
Arundinicola leucocephala (Linnaeus, 1764)	freirinha	Α	R	Magalhães, 1999
Gubernetes yetapa (Vieillot, 1818)	tesoura-do-brejo	С	R	Magalhães, 1999
Cnemotriccus fuscatus (Wied, 1831)	guaracavuçu	F	R	Willis, 1979
Lathrotriccus euleri (Cabanis, 1868)	enferrujado	F	RM	Willis, 1979

Contopus cinereus (Spix, 1825)	papa-moscas-cinzento	F	M	Willis, 1979
Knipolegus cyanirostris (Vieillot, 1818)	maria-preta-de-bico-azulado	F	M	Willis, 1979
Knipolegus lophotes Boie, 1828	maria-preta-de-penacho	С	R	Panucci, 2014
Satrapa icterophrys (Vieillot, 1818)	suiriri-pequeno	С	R	Magalhães, 1999
Xolmis cinereus (Vieillot, 1816)	primavera	С	R	Magalhães, 1999
Xolmis velatus (Lichtenstein, 1823)	noivinha-branca	С	R	Magalhães, 1999
Muscipipra vetula (Lichtenstein, 1823)	tesoura-cinzenta	F	M	Magalhães, 1999
Vireonidae				
Cyclarhis gujanensis (Gmelin, 1789)	pitiguari	F	R	Willis, 1979
Hylophilus amaurocephalus (Nordmann, 1835)	vite-vite-de-olho-cinza	F	R	Willis, 1979
Vireo chivi (Vieillot, 1817)	juruviara	F	RM	Willis, 1979
Corvidae				
Cyanocorax cristatellus (Temminck, 1823)	gralha-do-campo	F	R	Magalhães, 1999
Cyanocorax chrysops (Vieillot, 1818)	gralha-picaça	F	R	Willis, 1979
Hirundinidae				
Pygochelidon cyanoleuca (Vieillot, 1817)	andorinha-pequena-de-casa	С	R	Willis, 1979
Alopochelidon fucata (Temminck, 1822)	andorinha-morena	С	R	Magalhães, 1999
Stelgidopteryx ruficollis (Vieillot, 1817)	andorinha-serradora	С	R	Willis, 1979
Progne tapera (Vieillot, 1817)	andorinha-do-campo	С	RM	Magalhães, 1999
Progne subis (Linnaeus, 1758)	andorinha-azul	С	M	Rodrigues, 2016
Progne chalybea (Gmelin, 1789)	andorinha-grande	С	RM	Willis, 1979
Tachycineta albiventer (Boddaert, 1783)	andorinha-do-rio	Α	RM	Magalhães, 1999
Tachycineta leucorrhoa (Vieillot, 1817)	andorinha-de-sobre-branco	С	R	Magalhães, 1999
Tachycineta leucopyga (Meyen, 1834)	andorinha-chilena	С	M	Cipriani, 2012
Riparia riparia (Linnaeus, 1758)	andorinha-do-barranco	С	M	Bucci, 2018
Hirundo rustica Linnaeus, 1758	andorinha-de-bando	С	M	Magalhães, 1999
Petrochelidon pyrrhonota (Vieillot, 1817)	andorinha-de-dorso-acanelado	С	M	Antunes & Willis, 2003
Troglodytidae				

Troglodytes musculus Naumann, 1823	corruíra	С	R	Willis, 1979
Donacobiidae				
Donacobius atricapilla (Linnaeus, 1766)	japacanim	Α	R	Magalhães, 1999
Turdidae				
Turdus flavipes Vieillot, 1818	sabiá-una	F	М	Willis, 1979
Turdus leucomelas Vieillot, 1818	sabiá-branco	F	R	Willis, 1979
Turdus rufiventris Vieillot, 1818	sabiá-laranjeira	F	R	Willis, 1979
Turdus amaurochalinus Cabanis, 1850	sabiá-poca	F	R	Willis, 1979
Turdus subalaris (Seebohm, 1887)	sabiá-ferreiro	F	М	Magalhães, 1999
Turdus albicollis Vieillot, 1818	sabiá-coleira	F	R	Willis, 1979
Mimidae				
Mimus saturninus (Lichtenstein, 1823)	sabiá-do-campo	С	R	Magalhães, 1999
Motacillidae				
Anthus lutescens Pucheran, 1855	caminheiro-zumbidor	С	R	Magalhães, 1999
Passerellidae				
Zonotrichia capensis (Statius Muller, 1776)	tico-tico	F	R	Willis, 1979
Ammodramus humeralis (Bosc, 1792)	tico-tico-do-campo	С	R	Magalhães, 1999
Arremon flavirostris Swainson, 1838	tico-tico-de-bico-amarelo	F	R	d'Horta et al., 2013
Parulidae				
Setophaga pitiayumi (Vieillot, 1817)	mariquita	F	R	Willis, 1979
Geothlypis aequinoctialis (Gmelin, 1789)	pia-cobra	Α	R	Magalhães, 1999
Basileuterus culicivorus (Deppe, 1830)	pula-pula	F	R	Willis, 1979
Myiothlypis flaveola Baird, 1865	canário-do-mato	F	R	Willis, 1979
Myiothlypis leucoblephara (Vieillot, 1817)	pula-pula-assobiador	F	R	Willis, 1979
Myiothlypis leucophrys (Pelzeln, 1868)	pula-pula-de-sobrancelha	F	R	d'Horta et al., 2013
Icteridae				
Psarocolius decumanus (Pallas, 1769)	japu	F	R	Fazenda Bacury, 2018
Cacicus haemorrhous (Linnaeus, 1766)	guaxe	F	R	Willis, 1979

Icterus pyrrhopterus (Vieillot, 1819)	encontro	F	R	Willis, 1979
Gnorimopsar chopi (Vieillot, 1819)	pássaro-preto	С	R	Magalhães, 1999
Agelasticus cyanopus (Vieillot, 1819)	carretão	Α	R	Magalhães, 1999
Chrysomus ruficapillus (Vieillot, 1819)	garibaldi	Α	R	Magalhães, 1999
Pseudoleistes guirahuro (Vieillot, 1819)	chopim-do-brejo	С	R	Magalhães, 1999
Molothrus bonariensis (Gmelin, 1789)	chupim	С	R	Magalhães, 1999
Sturnella superciliaris (Bonaparte, 1850)	polícia-inglesa-do-sul	С	R	Magalhães, 1999
Thraupidae				
Pipraeidea melanonota (Vieillot, 1819)	saíra-viúva	F	M	Willis, 1979
Cissopis leverianus (Gmelin, 1788)	tietinga	F	R	Willis, 1979
Schistochlamys melanopis (Latham, 1790)	sanhaço-de-coleira	С	R	Costa, 2016
Schistochlamys ruficapillus (Vieillot, 1817)	bico-de-veludo	С	R	Magalhães, 1999
Paroaria dominicana (Linnaeus, 1758)	cardeal-do-nordeste	С	R	Moraes, 2018
Tangara sayaca (Linnaeus, 1766)	sanhaço-cinzento	F	R	Willis, 1979
Tangara cayana (Linnaeus, 1766)	saíra-amarela	F	R	Willis, 1979
Nemosia pileata (Boddaert, 1783)	saíra-de-chapéu-preto	F	R	Willis, 1979
Conirostrum speciosum (Temminck, 1824)	figuinha-de-rabo-castanho	F	R	Willis, 1979
Sicalis flaveola (Linnaeus, 1766)	canário-da-terra	С	R	Willis, 1979
Sicalis luteola (Sparrman, 1789)	tipio	С	R	Antunes & Willis, 2003
Haplospiza unicolor Cabanis, 1851	cigarra-bambu	F	M	Magalhães, 1999
Hemithraupis ruficapilla (Vieillot, 1818)	saíra-ferrugem	F	R	Willis, 1979
Volatinia jacarina (Linnaeus, 1766)	tiziu	С	R	Willis, 1979
Trichothraupis melanops (Vieillot, 1818)	tiê-de-topete	F	R	Willis, 1979
Coryphospingus cucullatus (Statius Muller, 1776)	tico-tico-rei	F	R	Willis, 1979
Tachyphonus coronatus (Vieillot, 1822)	tiê-preto	F	R	Willis, 1979
Ramphocelus carbo (Pallas, 1764)	pipira-vermelha	F	R	Willis, 1979
Tersina viridis (Illiger, 1811)	saí-andorinha	F	RM	Willis, 1979
Dacnis cayana (Linnaeus, 1766)	saí-azul	F	R	Willis, 1979

Coereba flaveola (Linnaeus, 1758)	cambacica	F	R	Willis, 1979
Tiaris fuliginosus (Wied, 1830)	cigarra-preta	F	R	Willis, 1979
Sporophila lineola (Linnaeus, 1758)	bigodinho	С	RM	Magalhães, 1999
Sporophila collaris (Boddaert, 1783)	coleiro-do-brejo	Α	R	Pinto, 2015
Sporophila caerulescens (Vieillot, 1823)	coleirinho	С	R	Willis, 1979
Sporophila leucoptera (Vieillot, 1817)	chorão	С	R	Magalhães, 1999
Sporophila pileata (Sclater, 1865)	caboclinho-branco	С	RM	Magalhães, 1999
Sporophila hypoxantha Cabanis, 1851	caboclinho-de-barriga-vermelha	С	M	Fazenda Bacury, 2018
Sporophila angolensis (Linnaeus, 1766)	curió	F	R	Willis, 1979
Emberizoides herbicola (Vieillot, 1817)	canário-do-campo	С	R	Magalhães, 1999
Saltatricula atricollis (Vieillot, 1817)	batuqueiro	С	R	Magalhães, 1999
Saltator similis d'Orbigny & Lafresnaye, 1837	trinca-ferro	F	R	Willis, 1979
Saltator fuliginosus (Daudin, 1800)	bico-de-pimenta	F	R	Willis, 1979
Thlypopsis sordida (d'Orbigny & Lafresnaye, 1837)	saí-canário	F	R	Willis, 1979
Pyrrhocoma ruficeps (Strickland, 1844)	cabecinha-castanha	F	M	Antunes & Willis, 2003
Cardinalidae				
Habia rubica (Vieillot, 1817)	tiê-de-bando	F	R	Willis, 1979
Cyanoloxia brissonii (Lichtenstein, 1823)	azulão	F	R	Willis, 1979
Fringillidae				
Spinus magellanicus (Vieillot, 1805)	pintassilgo	С	RM	Magalhães, 1999
Euphonia chlorotica (Linnaeus, 1766)	fim-fim	F	R	Willis, 1979
Euphonia violacea (Linnaeus, 1758)	gaturamo	F	R	Willis, 1979
Euphonia cyanocephala (Vieillot, 1818)	gaturamo-rei	F	M	Willis & Oniki, 2003
Estrildidae				
Estrilda astrild (Linnaeus, 1758)	bico-de-lacre	С	R	d'Horta et al., 2013
Passeridae				
Passer domesticus (Linnaeus, 1758)	pardal	С	R	Magalhães, 1999

Anexo 4 III. Anfíbios registrados na área de estudo. Ecossistemas de ocorrência: A - ambientes abertos; F - ambientes florestais.

Nome do Táxon	Nome Popular	Ecossistemas	Referência
Classe Lissamphibia			
Ordem Anura			
Família Bufonidae			
Rhinella ornata (Spix, 1824)	sapo-cururuzinho	F	d'Horta et al., 2013
Rhinella schneideri (Werner, 1894)	sapo-cururu	Α	d'Horta et al., 2013
Craugastoridae			
Haddadus binotatus (Spix, 1824)	rã-do-folhiço	F	d'Horta et al., 2013
Hylidae			
Dendropsophus elianeae (Napoli & Caramaschi, 2000)	pererequinha	Α	d'Horta et al., 2013
Dendropsophus minutus (Peters, 1872)	pererequinha-do-brejo	Α	d'Horta et al., 2013
Dendropsophus nanus (Boulenger, 1889)	pererequinha-do-brejo	Α	d'Horta et al., 2013
Dendropsophus sanborni (Schmidt, 1944)	pererequinha	Α	Species Link, 2018
Hypsiboas albopunctatus (Spix, 1824)	perereca-cabrinha	A/F	d'Horta et al., 2013
Hypsiboas faber (Wied-Neuwied, 1821)	sapo-martelo	A/F	d'Horta et al., 2013
Hypsiboas lundii (Burmeister, 1856)	perereca-da-mata	F	d'Horta et al., 2013
Scinas fuscomarginatus (A. Lutz, 1925)	perereca-chorona	Α	d'Horta et al., 2013
Scinas fuscovarius (A. Lutz, 1925)	perereca-de-banheiro	Α	d'Horta et al., 2013
Leptodactylidae			
Leptodactylus furnarius Sazinha & Bokermann, 1978	rã-oleira	Α	Species Link, 2018
Leptodactylus fuscus (Schneider, 1799)	rã-assobiadora	Α	d'Horta et al., 2013
Leptodactylus labyrinthicus (Spix, 1824)	rã-pimenta	Α	d'Horta et al., 2013
Leptodactylus latrans (Steffen, 1815)	rã-manteiga	Α	d'Horta et al., 2013
Leptodactylus mystaceus (Spix, 1824)	rã-marrom	Α	d'Horta et al., 2013
Leptodactylus mystacinus (Burmeister, 1861)	rã-assobiadora	Α	d'Horta et al., 2013
Leptodactylus podicipinus (Cope, 1862)	rã-goteira	Α	d'Horta et al., 2013
Physalaemus centralis Bokermann, 1962	rãzinha-do-cerrado	Α	Species Link, 2018

Nome do Táxon	Nome Popular	Ecossistemas	Referência
Physalaemus cuvieri Fitzinger, 1826	rã-cachorro	Α	d'Horta et al., 2013
Physalaemus marmoratus (Reinhardt & Lütken, 1862 "1861")	rã-fórmula-um	Α	d'Horta et al., 2013
Physalaemus nattereri (Steindachner, 1863)	rã-quatro-olhos	Α	d'Horta et al., 2013
Pseudopaludicola mystacalis (Cope, 1887)	rãzinha-grillo	Α	d'Horta et al., 2013
Microhylidae	-		
Elachistocleis cf. cesarii (Miranda Ribeiro (1920)	rã-oval	Α	Antunes obs. pess.

Anexo 4 IV. Répteis registrados na área de estudo. Ecossistemas de ocorrência: A - ambientes abertos; F - ambientes florestais; S - sítios aquáticos.

Nome do Táxon	Nome Popular	Ecossistemas	Referência
Classe Reptilia			
Ordem Testudines			
Família Chelidae			
Phrynops geoffroanus (Schweigger, 1812)	cágado-de-barbicha	S	d'Horta et al., 2013
Crocodylia			
Alligatoridae			
Caiman latirostris (Daudin, 1801)	jacaré-de-papo-amarelo	S	d'Horta et al., 2013
Squamata			
Gekkonidae			
Hemidactylus mabouia (Moreau de Jonnès, 1818)	lagartixa	Α	d'Horta et al., 2013
Mabuyidae			
Notomabuya frenata (Cope, 1862)	lagarto	F	d'Horta et al., 2013
Leiosauridae			
Enyalius perditus Jackson, 1978	camaleão	F	d'Horta et al., 2013
Polychrotidae			
Polychrus acutirostris Spix, 1825	papa-vento/lagarto-preguiça	A/F	d'Horta et al., 2013
Tropiduridae			
Tropidurus torquatus (Wied, 1820)	calango/lagarto-das-pedras	A/F	d'Horta et al., 2013
Teiidae			
Ameiva ameiva ameiva (Linnaeus, 1758)	calango	A/F	d'Horta et al., 2013
Salvator merianae (Duméril & Bibron, 1839)	teiú	A/F	d'Horta et al., 2013
Amphisbaenidae			
Amphisbaena alba Linnaeus, 1758	cobra-cega/cobra-de-duas-cabeças	A/F	Species Link, 2018
Leposternon microcephalum Wagler in Spix, 1824	cobra-cega/cobra-de-duas-cabeças	F	d'Horta et al., 2013
Boidae			
Boa constrictor amarali (Stull, 1932)	jibóia	A/F	d'Horta et al., 2013

Nome do Táxon	Nome Popular	Ecossistemas	Referência
Eunectes murinus (Linnaeus, 1758)	sucuri	S	Antunes obs. pess.
Colubridae			
Spilotes pullatus pullatus (Linnaeus, 1758)	caninana	A/F	Species Link, 2018
Dipsadidae			
Erythrolamprus frenatus (Werner, 1909)	cobra	A/F	d'Horta et al., 2013
Erythrolamprus miliaris merremii (Wied, 1821)	cobra-d'água	S	d'Horta et al., 2013
Erythrolamprus poecilogyrus poecilogyrus (Wied, 1824)	cobra-de-capim	A/F	d'Horta et al., 2013
Erythrolamprus reginae (Wagler in Spix, 1824)	jabutibóia	A/F	d'Horta et al., 2013
Phalotris mertensi (Hoge, 1955)	falsa-coral	Α	d'Horta et al., 2013
Philodryas patagoniensis (Girard, 1858)	parelheira	A/F	d'Horta et al., 2013
Viperidae			
Bothrops jararaca (Wied, 1824)	jararaca	F	Antunes obs. pess.
Crotalus durissus terrificus (Laurenti, 1768)	cascavél	Α	d'Horta et al., 2013

Anexo V. Peixes registrados na área de estudo.

Nome do Táxon	Nome Popular	Referência
Actinopterygii		
Clupeiformes		
Clupeidae		
Platanichthys platana (Regan, 1917)	sardinha	Rivero et al., 2013
Cypriniformes		
Cyprinidae		
Cyprinus carpio Linnaeus, 1758	carpa	Rivero et al., 2013
Characiformes		
Acestrorhynchidae		
Acestrorhynchus lacustris (Lütken, 1875)	peixe-cachorro	MZUSP
Anostomidae		
Leporellus vittatus (Valenciennes, 1850)	piau-listrado	MZUSP
Leporinus friderici (Bloch, 1794)	piau-de-tês-pintas	MZUSP
Leporinus lacustris Campos, 1945	paiu-de-lagoa	MZUSP
Leporinus obtusidens Valenciennes, 1836	piapara	MZUSP
Leporinus octofasciatus Steindachner, 1915	ferreirinha	MZUSP
Leporinus piavussu Britski, Birindelli & Garavello, 2012	piavuçu	MZUSP
Leporinus striatus Kner, 1858	canivete	MZUSP
Schizodon altoparanae Garavello & Britski, 1990	timboré	MZUSP
Schizodon intermedius Garavello & Britski, 1990	timboré	MZUSP
Schizodon nasutus (Kner, 1858)	taguara	MZUSP
Bryconidae		
Brycon orbygnianus (Valenciennes, 1849)	piracanjuba	MZUSP
Characidae		
Oligosarcus pintoi Campos, 1945	peixe-cachorro	MZUSP
Aphyocharax anisitsi Eigenmann & Kennedy, 1903	piquirão	MZUSP

Nome do Táxon	Nome Popular	Referência
Astyanax altiparanae Garutti & Britski, 2000	lambari-do-rabo-amarelo	MZUSP
Astyanax bockmanni Vari & Castro, 2007	lambari-do-rabo-vermelho	Rivero et al., 2013
Astyanax fasciatus (Cuvier, 1819)	lambari-do-rabo-vermelho	MZUSP
Astyanax schubarti Britski, 1964	lambari	Rivero et al., 2013
Roeboides descalvadensis Fowler, 1932	saicanga	Rivero et al., 2013
Galeocharax knerii Steindachner, 1875	saicanga	MZUSP
Serrapinnus notomelas (Eigenmann, 1915)	lambari	MZUSP
Hemigrammus marginatus Ellis, 1911	lambari	MZUSP
Hyphessobrycon eques (Steindachner), 1882	mato-grosso	MZUSP
Moenkhausia intermedia Eigenmann, 1908	lambari-corintiano	MZUSP
Moenkhausia sanctaefilomenae (Steindachner, 1907)	lambari	MZUSP
Salminus brasiliensis (Cuvier, 1816)	dourado	MZUSP
Salminus hilarii Valenciennes, 1850	tabarana	MZUSP
Gymnocorymbus ternetzi (Boulenger, 1895)	tetra-preto	Rivero et al., 2013
Bryconamericus iheringii (Boulenger, 1887)	lambari	MZUSP
Crenuchidae		
Characidium gomesi Travassos, 1956	mocinha	MZUSP
Curimatidae		
Cyphocharax modestus (Fernández-Yépez, 1948)	saguiru	MZUSP
Cyphocharax nagelii (Steindachner, 1881)	saguiru	MZUSP
Steindachnerina insculpta (Günther, 1868)	branquinha	MZUSP
Erythrinidae		
Hoplerythrinus unitaeniatus (Agassiz, 1829)	jeju	MZUSP
Hoplias intermedius (Günther, 1864)	traírão	Rivero et al., 2013
Hoplias malabaricus (Bloch, 1794)	traíra	MZUSP
Parodontidae		
Apareiodon affinis (Steindachner, 1879)	canivete	MZUSP

Nome do Táxon	Nome Popular	Referência
Apareiodon piracicabae (Eigenmann, 1907)	canivete	MZUSP
Parodon nasus Kner, 1859	canivete	MZUSP
Prochilodontidae		
Prochilodus lineatus Valenciennes, 1836	curimbatá	MZUSP
Prochilodus vimboides Kner, 1859	curimbatá-de-lagoa	MZUSP
Serrasalmidae		
Piaractus mesopotamicus (Holmberg, 1887)	pacu	Maruyama, 2007
Serrasalmus maculatus Kner, 1858	pirambeba	MZUSP
Triportheidae		
Triportheus nematurus (Kner, 1858)	sardinha-papuda	MZUSP
Siluriformes		
Auchenipteridae		
Trachelyopterus galeatus (Linnaeus, 1766)	cangati	Rivero et al., 2013
Tatia neivai (Ihering, 1930)	cangati	MZUSP
Callichthyidae		
Hoplosternum littorale (Hancock, 1828)	caborja	MZUSP
Corydoras aeneus (Gill, 1858)	sarro	MZUSP
Corydoras flaveolus Ihering, 1911	sarro	MZUSP
Cetopsidae		
Cetopsis gobioides Kner, 1857	cachorro-de-padre	MZUSP
Doradidae		
Rhinodoras dorbignyi Kner, 1855	armau	MZUSP
Heptapteridae		
Imparfinis piperatus Eigemann & Norris, 1900	mandizinho	MZUSP
Pimelodella gracilis (Valenciennes, 1835)	mandizinho	MZUSP
Rhamdia quelen (Quoy & Gaimard, 1824)	jundiá	MZUSP
Loricariidae		

Nome do Táxon	Nome Popular	Referência
Hypostomus ancistroides (Ihering, 1911)	cascudo	MZUSP
Hypostomus hermanni (Ihering, 1905)	cascudo	MZUSP
Hypostomus iheringii (Regan, 1908)	cascudo	MZUSP
Hypostomus paulinus (Ihering, 1905)	cascudo	MZUSP
Hypostomus regani (Ihering, 1905)	cascudo	MZUSP
Hypostomus strigaticeps (Regan, 1908)	cascudo	MZUSP
Megalancistrus parananus (Peters, 1881)	cascudo-abacaxi	MZUSP
Pterygoplichthys anisitsi Eigenmann & Kennedy, 1903	cascudo	MZUSP
Rhinelepis aspera Spix & Agassiz, 1829	cascudo-preto	MZUSP
Loricaria piracicabae Ihering, 1907	cascudo-espada	MZUSP
Rineloricaria latirostris (Boulenger, 1900)	cascudo-espada	MZUSP
Pimelodidae		
Iheringichthys labrosus (Lütken, 1874)	papa-isca	MZUSP
Megalonema platanum (Günther, 1880)	fidalgo	MZUSP
Pimelodus fur (Lütken, 1874)	mandi	MZUSP
Pimelodus maculatus Lacepède, 1803	mandijuba	MZUSP
Pseudoplatystoma corruscans (Spix & Agassiz, 1829)	pintado	MZUSP
Sorubim lima (Bloch & Schneider, 1801)	jurupensém	Rivero et al., 2013
Pseudopimelodidae		
Pseudopimelodus mangurus (Valenciennes, 1835)	bagre-sapo	MZUSP
Gymnotiformes		
Gymnotidae		
Gymnotus carapo Linnaeus, 1758	tuvira	MZUSP
Gymnotus sylvius Albert & Fernandes-Matiola, 1999	tuvira	Rivero et al., 2013
Sternopygidae		
Eigenmannia virescens (Valenciennes, 1836)	peixe-faca	MZUSP
Sternopygus macrurus (Bloch & Schneider, 1801)	sarapó	Rivero et al., 2013

Nome do Táxon	Nome Popular	Referência
Cyprinodontiformes		
Poeciliidae		
Phalloceros harpagos Lucinda, 2008	guaru	Rivero et al., 2013
Poecilia reticulata Peters, 1859	lebiste	MZUSP
Synbranchiformes		
Synbranchidae		
Synbranchus marmoratus Bloch, 1795	muçum	Rivero et al., 2013
Cichliformes		
Cichlidae		
Astronotus crassipinnis (Heckel, 1840)	acará-açu	MZUSP
Cichla sp.	tucunaré	Maruyama, 2007
Crenicichla britskii Kullander, 1982	jacundá	MZUSP
Geophagus brasiliensis (Quoy & Gaimard, 1824)	cará	MZUSP
Satanoperca pappaterra (Heckel, 1840)	porquinho	Rivero et al., 2013
Coptodon rendalli (Boulenger, 1897)	tilápia	MZUSP
Oreochromis niloticus (Linnaeus, 1758)	tilápia-do-Nilo	Rivero et al., 2013
Eupercaria incertae sedis		
Sciaenidae		
Plagioscion squamosissimus (Heckel, 1840)	corvina	MZUSP

Anexo VI. Algumas aves encontradas na área de estudo.

Ninho de cochicho Anumbius annumbi espécie campestre prejudicada pela substituição das pastagens por cultivos. Fazenda São Francisco do Tietê 26/06/2018.

Jacupemba Penelope superciliaris macho (íris vermelha), espécie quase ameaçada de extinção no estado de São Paulo devido à perda de habitat e caça. Fazenda Bacury 23/06/2018.

Grupo de marrecas-caboclas Dendrocygna autumnalis, Tanquã 25/06/2018.

Marrecas-caneleiras Dendrocygna bicolor e galinha-d'água Gallinula galeata, Tanquã 25/06/2018.

Grupo de irerês Dendrocygna viduata, Tanquã 25/06/2018.

Casal de marrecas-cricris Anas versicolor, Tanquã 15/10/2016.

Casal de marrecões Netta peposaca, fêmea à direita, Tanquã 15/10/2016.

Concentração de aves pescadoras, biguas Nannopterum brasilianus e garças Ardeidae, Tanquã 15/10/2016.

Tuiuiú Jabiru mycteria, garças-brancas-grandes Ardea alba, colhereiros Platalea ajaja e jaçanã Jacana jacana ao fundo à esquerda, Tanquã 15/10/2016. Notar os bancos de areia durante a estação chuvosa.

Caraúnas Plegadis chihi e três pernilongo-de-costas-brancas Himantopus melanurus, Tanquã

15/10/2016.

Colhereiros Platalea ajaja, Tanquã 15/10/2016.

Gavião-caramujeiro Rostrhamus sociabilis, Tanquã 15/10/2016.

Sanã-parda Laterallus melanophaius, Tanquã 15/10/2016.

Saracura-do-banhado Pardirallus sanguinolentus, Tanquã 15/10/2016.

Maçaricos-de-perna-amarela Tringa flavipes e maçaricos-de-sobre-branco Calidris fuscicollis, espécies migratórias norte-americanas, Tanquã 15/10/2016.

Maçarico-de-perna-amarela Tringa flavipes, espécie migratória norte-americana, Tanquã 15/10/2016

Pernilongo-de-costas-brancas Himantopus melanurus, Tanquã 15/10/2016.

Trinta-réis-grande Phaetusa simplex, o de bico amarelo no canto direito, espécie vulnerável à extinção no estado de São Paulo, Tanquã 25/06/2018.

Grupo de talha-mares Rynchops niger, Tanquã 25/06/2018

5. HIDROLOGIA SUPERFICIAL

5.1. METODOLOGIA UTILIZADA

A contextualização e a caracterização da região proposta para ser uma área de proteção ambiental foram feitas compilando-se dados secundários. O Relatório da Situação dos Recursos Hídricos das Bacias PCJ 2017 (Engenharia e Consultoria em Recursos Hídricos – IRRIGART, 2017) e os Relatórios de Qualidade das Águas Interiores do Estado de São Paulo (Companhia de Tecnologia de Saneamento Ambiental - CETESB, 2014, 2015, 2016, 2017, 2018) permitiram retratar a situação das águas superficiais onde se encontra a área.

Foram selecionados dois pontos de monitoramento da CETESB no rio Piracicaba, o PCAB 02800 localizado no distrito de Artemis (22°41'31"S; 47°46'39"W), em frente à fonte sulfurosa, junto ao posto 4D-07 do DAEE, e o PCBP 02500 localizado próximo à ponte da rodovia SP-191, no trecho que liga Santa Maria da Serra a São Manuel (22°37'44"S; 48°10'27"W) (Figura 5.1).

Para se ter uma noção do regime hídrico da região, foram usados os dados de chuva do período de 1917 a 2017 do posto meteorológico pertencente a ESALQ/USP, localizado próximo a área (22°42'30"S; 47°38'00"W; altitude de 546 metros) (Figura 5.1), disponível no site http://www.esalq.usp.br/departamentos/leb/postocon.html. Dados de temperatura do ar também foram utilizados na elaboração do balanço hídrico climatológico de Thornthwaite e Mather (1955), usando-se para isso a planilha eletrônica apresentada por Rolim et al. (1998), disponível no site http://www.esalq.usp.br/departamentos/leb/nurma.html.

Figura 5.1. Imagem de satélite do Google Earth[®] com a localização da área proposta para a área de estudo original, dos pontos de monitoramento da CETESB e do posto meteorológico da ESALQ/USP.

5.2. CARACTERIZAÇÃO DA REGIÃO ESTUDADA

A área proposta para se transformar em uma unidade de conservação está localizada nas bacias hidrográficas dos rios Piracicaba, Capivari e Jundiaí - PCJ, definida como Unidade de Gerenciamento de Recursos Hídricos 05 (UGRHI 5), que abriga a Região Metropolitana de Campinas (Figura 5.2). A UGRHI 5 é constituída por cinquenta e sete municípios, totalizando 5.686.888 habitantes, 12,6% da população do estado (CETESB, 2018; IBGE 2018). As maiores cidades da UGRHI são Campinas (1.182.429), Jundiaí (409.497), Piracicaba (397.322), Limeira (300.911), Sumaré (273.007), Americana (233.868 habitantes), Indaiatuba (239.602 habitantes), Hortolândia (222.186 habitantes) e Rio Claro (202.952 habitantes) (IBGE, 2018). Trata-se, portanto, de uma bacia de grande densidade populacional, onde mais da metade dos municípios conta com populações superiores a 30.000 habitantes.

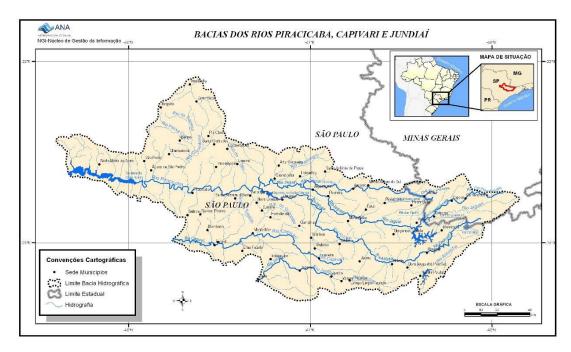


Figura 5.2. Mapa das bacias hidrográficas dos rios Piracicaba, Capivari e Jundiaí - PCJ, definida como Unidade de Gerenciamento de Recursos Hídricos 05 (UGRHI 5).

Fonte: http://arquivos.ana.gov.br/institucional/sag/CobrancaUso/BaciaPCJ/_img/MapaPCJ.jpg

A UGRHI 5 apresenta-se subdividida em 7 sub-bacias, conforme Tabela 5.1. A bacia conjunta dos Rios Piracicaba, Capivari e Jundiaí, os últimos afluentes do Médio Tietê, estende-se por 14.137,79 km², em território paulista, sendo 11.402,84 km² correspondentes à Bacia do Rio Piracicaba, 1.620,92 km² correspondentes à Bacia do Rio Capivari e 1.114,03 km² correspondentes à Bacia do Rio Jundiaí. As três bacias desenvolvem-se paralelamente no sentido leste/oeste (IRRIGART, 2017).

Tabela 5.1. Subdivisão da UGRHI 5 - PCJ em sub-bacias de drenagem (adaptado de IRRIGART, 2017).

Sub-bacia	Área de drenagem (km²)	Municípios
Camanducaia	870,68 (da divisa com Minas Gerais até o Rio Piracicaba)	Amparo, Holambra, Jaguariúna, Monte Alegre do Sul, Pedra Bela, Pedreira, Pinhalzinho, Socorro, Sto. Antônio de Posse, Tuiuti e Serra Negra
Jaguari	2.323,42 (da divisa com Minas Gerais até o Rio Piracicaba)	Americana, Atibaia, Bragança Paulista, Campinas, Cordeirópolis, Cosmópolis, Itatiba, Jaguariúna, Jarinu, Joanópolis, Jundiaí, Louveira, Morungaba, Nazaré Paulista, Nova Odessa, Paulínia, Piracaia, Valinhos e Vinhedo
Atibaia	2.828,76 (da divisa com Minas Gerais até o Rio Piracicaba)	Americana, Atibaia, Bragança Paulista, Campinas, Cordeirópolis, Cosmópolis, Itatiba, Jaguariúna, Jarinu, Joanópolis, Jundiaí, Louveira, Morungaba, Nazaré

Sub-bacia	Área de drenagem (km²)	Municípios
		Paulista, Nova Odessa, Paulínia, Piracaia, Valinhos e Vinhedo
Corumbataí	1.679,19 (da nascente à foz)	Analândia, Charqueada, Corumbataí, Ipeúna, Rio Claro e Sta. Gertrudes
Piracicaba	3.700,79 (da confluência Jaguari/Atibaia até o rio Tietê)	Águas de São Pedro, Americana, Campinas, Charqueada, Hortolândia, Iracemápolis, Limeira, Monte Mor, Nova Odessa, Paulínia, Piracicaba, Sta Bárbara D'Oeste, Rio das Pedras, Saltinho, Cordeirópolis, Sumaré, Santa Maria da Serra, São Pedro, e Piracicaba
Capivari	1.620,92 (da nascente à foz)	Campinas, Capivari, Elias Fausto, Hortolândia, Indaiatuba, Itatiba, Itupeva, Jundiaí, Louveira, Mombuca, Monte Mor, Rafard, Rio das Pedras e Santa Bárbara d'Oeste
Jundiaí	1.114,03 (da nascente à foz)	Atibaia, Cabreúva, Campo Limpo Paulista, Indaiatuba, Itatiba, Itupeva, Jarinu, Jundiaí, Mairiporã, Salto e Várzea Paulista

Na UGRHI 5, onde 96% dos habitantes vivem em áreas urbanas, são coletados 86% do esgoto produzido, sendo o índice de tratamento da ordem de 74% do total do esgoto gerado. Oito municípios não tratam seus esgotos, sendo Cosmópolis, com 69.086 habitantes, Rio das Pedras, com 33.935 habitantes, Bom Jesus dos Perdões, com 24.023 habitantes e Cordeirópolis, com 23.793 habitantes os maiores deles. (CETESB, 2018).

Em toda a região, o manejo de resíduos sólidos domiciliares é realizado, quase que exclusivamente, através de aterros sanitários classificados como "adequado". Cerca de 30 m³/s de água do Sistema Cantareira são transferidos para a Região Metropolitana de São Paulo (IRRIGART, 2017).

5.3. Diagnóstico da ÁREA PROPOSTA

5.3.1. Balanço Hídrico

A precipitação média anual na área de influência é estimada em 1.280,2 mm (Figura 5.3). Os valores históricos da precipitação média mensal estão resumidos na Figura 5.4. Quanto à época de ocorrência das chuvas, são caracterizados dois períodos distintos: um chuvoso, de outubro a março, representando 78% do total anual, e outro seco, de abril a setembro. Dezembro e janeiro apresentam maior índice pluviométrico, enquanto julho e agosto são os meses com menor precipitação. Observa-se a grande amplitude de valores mensais, em decorrência da variabilidade climática que ocorre ano a ano.

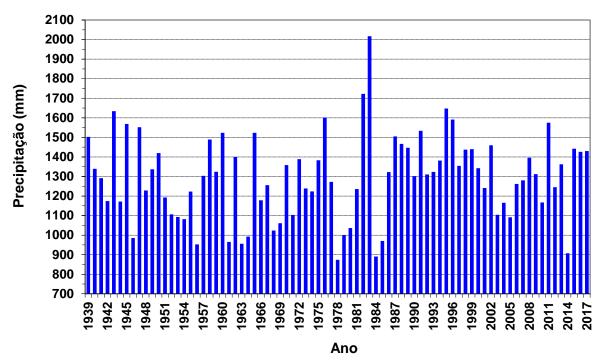


Figura 5.3. Precipitação média anual na região estudada no período de 1917 a 2017. Dados obtidos do posto meteorológico da ESALQ/USP.

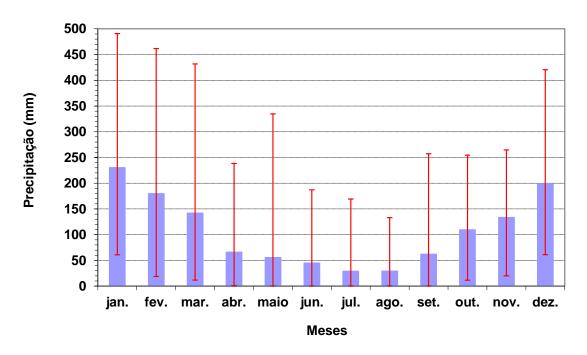


Figura 5.4. Precipitação média mensal na região estudada no período de 1917 a 2017. As linhas verticais em vermelho indicam a amplitude dos valores. Dados obtidos do posto meteorológico da ESALQ/USP.

Tabela 2.2. Balanço hídrico climatológico na região estudada para o período de 1917 a 2017.

Mês	Precipitação	ETP	ETR	EXC	DEF
ivies	(mm)	(mm)	(mm)	(mm)	(mm)
jan.	230,3	124,0	124,0	106,3	0,0
fev.	179,6	114,0	114,0	65,6	0,0
mar.	142,0	113,8	113,8	28,2	0,0
abr.	65,8	82,1	80,8	0,0	1,3
maio	55,5	61,0	60,0	0,0	0,9
jun.	44,7	47,7	47,1	0,0	0,6
jul.	28,9	47,6	42,2	0,0	5,4
ago.	29,3	62,1	47,4	0,0	14,7
set.	62,0	75,0	67,7	0,0	7,3
out.	109,4	93,9	93,9	0,0	0,0
nov.	133,5	103,2	103,2	0,0	0,0
dez.	199,3	117,5	117,5	68,6	0,0
Total	1.280,2	1.041,8	1.011,5	268,7	30,2

Obs: CAD - Capacidade de Água Disponível = 100 mm.

O balanço hídrico climatológico possibilita ter uma noção do regime hídrico da região onde está inserida a área (Tabela 5.2 e Figura 5.5). A evapotranspiração real (ETR) é elevada (1.041,8 mm) e abaixo da potencial (ETP), correspondendo a 79% da precipitação anual. De dezembro a março há excesso de água, totalizando 268,7 mm. A reposição de água ocorre

nos meses de outubro a dezembro. A deficiência hídrica do solo é de 30,2 mm ao ano, estendendo-se de abril até setembro, com pico nos meses de julho a setembro.

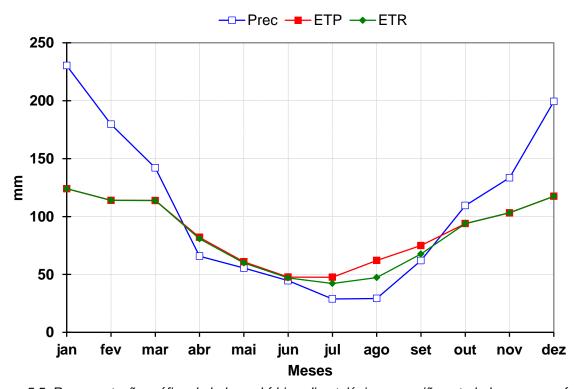


Figura 5.5. Representação gráfica do balanço hídrico climatológico na região estudada para o período de 1917 a 2017.

5.3.2. Hidrografia

Os principais corpos d'água da área proposta para a criação da unidade de conservação estão representados na Figura 5.6. Destes destaca-se o rio Piracicaba, maior afluente em volume de água do rio Tietê. Nasce da junção dos rios Atibaia e Jaguari, no município de Americana. Após atravessar a cidade de Piracicaba, recebe as águas de seu principal afluente, o rio Corumbataí. O rio Piracicaba percorre 115 km de sua formação até a sua foz no rio Tietê entre os municípios de Santa Maria da Serra e Barra Bonita (RIO PIRACICABA - SÃO PAULO, 2018). Próximo à foz encontra-se a região conhecida como minipantanal paulista, no bairro rural Tanquã, Piracicaba, ambiente de transição, correspondente às áreas úmidas sobre influência do reservatório de Barra Bonita, com predomínio de lagoas e alagados (Figura 5.7).

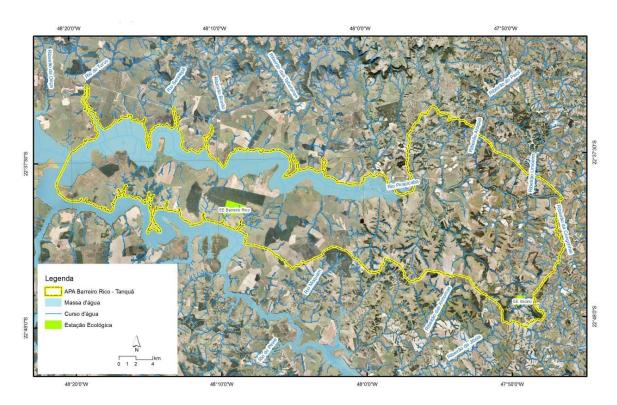


Figura 5.6. Rede de drenagem da área proposta para a criação da unidade de conservação.

Figura 5.7. Vista do rio Piracicaba no bairro Tanquã, Piracicaba (Foto: EPTV-G1, 28/02/2017).

5.3.3. Qualidade da Água

Pontos de monitoramento

Para fins de diagnóstico da qualidade da água na futura unidade de conservação, a CETESB analisou a série histórica dos resultados de dois pontos de monitoramento da qualidade da água pertencentes a sua Rede Básica na bacia do Rio Piracicaba: a montante do limite da futura Área de Proteção Ambiental (PCAB 02800), no município de Piracicaba e no braço do Rio Piracicaba (PCPB 02500), a jusante da várzea do Tanquã, no município de Santa Maria da Serra (Tabela 5.1; Figura 5.1).

Tabela 5.1. Descrição dos Pontos de monitoramento na bacia do Rio Piracicaba utilizados para diagnóstico da qualidade da água na futura unidade de conservação.

Corpo Hídrico	Código CETESB	Local de Amostragem	Município	Latitude S	Longitude O
Rio Piracicaba	PCAB 02800	Em frente à fonte sulfurosa, junto ao posto 4D-07 do DAEE	Piracicaba	22 41 31	47 46 39
Braço do Rio Piracicaba	PCPB 02500	Ponte na rodovia SP- 191, no trecho que liga Sta. Maria da Serra a São Manuel	Sta. Maria da Serra	22 37 44	48 10 27

Fonte: CETESB, 2017.

A inserção desses pontos na Rede Básica da CETESB justifica-se pelo seguinte:

- 1. Ponto PCAB 02800: localizado a jusante na bacia do Rio Piracicaba, possibilita avaliar alterações na qualidade da água em função da presença de carga orgânica remanescente oriunda do lançamento de esgotos domésticos em afluentes que drenam essa bacia. Os principais municípios que contribuem com carga orgânica na bacia do Rio Piracicaba são: Piracicaba (1.500 kg DBO dia-1), Limeira (7.365 kg DBO dia-1), Americana (9.883 kg DBO dia-1), Sumaré (11.227 kg DBO dia-1) e Campinas (6.547 kg DBO dia-1).
- 2. Ponto PCPB 02500: localizado no braço do Rio Piracicaba, compreendendo ambiente lêntico formado a partir da construção da barragem de Barra Bonita, no qual predominam processos de sedimentação em função do maior tempo de residência da água. Esse ponto permite avaliar a recuperação da qualidade da água do Rio Piracicaba, após o limite de montante da futura unidade de conservação.

Figura 5.8. Limites da futura unidade de conservação e localização dos pontos de monitoramento da qualidade da água da Rede Básica da CETESB (Imagem extraída do Google Earth em 14/06/2018).

Resultados das variáveis de qualidade

A Tabela 5.2 apresenta as médias dos resultados do monitoramento realizado em 2017 e dos últimos cinco anos (2012 a 2016) para as variáveis sanitárias (Condutividade, Oxigênio Dissolvido, Demanda Bioquímica do Oxigênio, Nitrogênio Amoniacal, Fósforo Total, E. coli, Turbidez) e hidrobiológicas (Clorofila a) (CETESB, 2018).

Os resultados foram comparados aos padrões de qualidade para corpos d'água da Classe 2, estabelecidos na Resolução CONAMA no. 357/2005. Tanto no Rio Piracicaba como no Braço do Rio Piracicaba, houve melhora em 2017 em relação aos últimos 5 anos, o que pode ser confirmado pelo atendimento dos padrões de qualidade, com exceção do Fósforo Total e do E. coli. Os resultados também indicam uma melhora na qualidade da água, em termos espaciais, em função de processos de autodepuração no braço do rio Piracicaba.

Tabela 5.2. Média dos resultados do monitoramento realizado em 2017 e dos últimos cinco anos (2012 a 2016) para as variáveis sanitárias e hidrobiológicas.

			<u> </u>					
	Variáveis	Unidade	PQ - Classe 2		PCAB 02800		PCPB 02500	
			Lótico	Lêntico	2012-	2017	2012-	2017
					2016		2016	

OD	mg L-1	≥5		5,1	5,2	8,3	7,3
DBO	mg L-1	≤5		6,7	5,0	4,8	3,7
N.	mg L-1	≤3,7		2,1	1,8	0,37	0,5
Amoniacal							
Fósforo	mg L-1	≤0,1	≤0,03	0,33	0,6	0,087	0,093
Total							
E. coli	UFC 100 mL-	≤620		5,5 +E03	5,8	3,2	1,8
	1				+E03		
Turbidez	UNT	≤100		109	72	25	9,5
Clorofila a	μg L-1	≤30		16	3,1	28	10

P.Q – Padrão de Qualidade para água doces da Classe 2, conforme establecido na Resolução CONAMA nº 357/2005.

Índices de qualidade das águas

Os índices são utilizados para fornecer uma visão geral da qualidade da água, pois integram os resultados de diversas variáveis através de um único indicador. Assim, para transmitir uma informação passível de compreensão pelo público em geral, a CETESB utiliza índices específicos que refletem a qualidade das águas de acordo com seus usos pretendidos. Para o diagnóstico de qualidade da água nos pontos PCAB 02800 e PCPB 02500 foram utilizadas as médias de 2017 e dos últimos cinco anos (2012 a 2016) dos seguintes índices:

- a) IQA avalia a qualidade da água para fins de abastecimento público, sendo calculado a partir dos resultados das variáveis Temperatura, Oxigênio Dissolvido, Demanda Bioquímica do Oxigênio, pH, Nitrogênio Total, Fósforo Total, Escherichia coli, Turbidez e Sólidos Totais.
- b) IVA avalia a qualidade da água para fins de proteção da vida aquática (IVA) através do cálculo dos resultados das variáveis essenciais para os organismos aquáticos (Oxigênio Dissolvido, pH e Toxicidade por meio de ensaio ecotoxicológico com Ceriodaphnia dubia), das substâncias tóxicas (Cádmio, Chumbo, Cobre, Crômio, Mercúrio, Níquel e Surfactantes) e do grau de trofia (Fósforo Total e Clorofila a).

Os resultados para a média de 2017 e dos últimos 5 anos dos dois índices podem ser visualizados na Tabela 3 e as categorias de classificação desses índices na Tabela 5.4.

Tabela 5.3. Média de 2017 e dos últimos 5 anos (2012 a 2016) para o IQA e IVA nos pontos PCAB 02800 e PCPB 02500.

Ponto	IQA		IVA		
FOIILO	2012- 2016	2017	2012-2016	2017	
PCAB 02800	46	45	5,5	5,4	
PCPB 02500	77	83	3,9	3,2	

Fonte: CETESB, 2018

Tabela 5.4. Categorias de classificação do IQA e do IVA.

Categorias	IQA	IVA
Ótima	79≤IQA≤100	≤2,5
Boa	51≤IQA≤79	3,3≤IVA≤2,6
Regular	36≤IQA≤51	4,6≤IVA≤3,4
Ruim	19≤IQA≤36	6,7≤IVA≤4,6
Péssima	≤19	≥6,8

Fonte: CETESB, 2018

As médias para o IQA no ponto PCAB 02800 mostraram que a qualidade, classificada como Regular em 2017, melhorou no braço do Rio Piracicaba, atingindo a categoria Ótima. A qualidade em termos de proteção da vida aquática também apresentou comportamento semelhante, passando de Ruim na calha do Rio Piracicaba para Boa no braço do reservatório. Ambos os índices também apresentaram comportamento semelhante na comparação com os últimos 5 anos, comprovando que processos de autodepuração no braço do Rio Piracicaba atuam de forma a melhorar a qualidade da água.

Avaliação dos serviços ambientais da várzea do Tanquã

O ponto PCPB 02500, localizado a jusante da várzea do Tanquã permite avaliar o papel desse ecossitema no processo de autodepuração da água. De forma a avaliar esse serviço, a Tabela 5 apresenta as concentrações médias relativas ao ano de 2017 das variáveis DBO, Nitrogênio Amoniacal, Fósforo Total, E. coli e Turbidez nos pontos PCAB 02800 e PCPB 02500, localizados respectivamente a montante e a jusante da várzea do Tanquã. A

eficiência da várzea foi calculada através da diferença percentual nas concentrações das variáveis entre os pontos de montante (PCAB 02800) e de jusante (PCPB 02500).

Tabela 5.5. Concentrações médias relativas a 2017 e percentual de redução das variáveis DBO, Nitrogênio Amoniacal, Fósforo Total, E. coli e Turbidez nos pontos a montante (PCAB 02800) e a jusante (PCPB 02500) da várzea do Tanquã.

Variáveis	Unidade	PCAB 02800	PCAB 02800 PCPB 02500	
DBO	mg L-1	5,0	3,7	26
N. Amoniacal	mg L-1	1,8	0,5	72
Fósforo Total	mg L-1	0,6	0,093	94,4
E. coli	UFC 100 mL-1	5,8 +E03	1,8	99,9
Turbidez	UNT	72	9,5	86,8

Os ecossistemas de várzeas (wetlands em inglês) são ambientes de transição entre os sistemas aquáticos e terrestres, aonde o nível freático está na superfície ou próximo dessa, encontrando-se a superfície terrestre coberta por águas rasas (Novotny, 2003). Esse fato, aliado à presença plantas endêmicas e microorganismos associados, assim como aqueles presentes nos sedimentos, favorecem a ocorrência de diversos processos físicos, químicos e biológicos relacionados ao tratamento de poluentes em águas tais como sedimentação, filtração, absorção radicular, decomposição microbiana, adsorção, precipitação sob a forma de colóides, volatilização e foto-oxidação (Novotny, 2003). Esses processos podem, portanto, explicar a redução das concentrações dos parâmetros sanitários mensurados no ponto localizado a jusante da várzea do Tanquã (PCPB 02500), com a consequente melhora do IQA. Em relação ao IVA, a melhora foi influenciada pelo aumento da produtividade primária (aumento de 69 % na Clorofila a) e consequente elevação dos níveis de OD (aumento de 28,7 %).

5.4. CONSIDERAÇÕES GERAIS

A análise dos recursos hídricos, considerando seus aspectos de quantidade e de qualidade, mostrou que a esparsa cobertura florestal desse trecho do rio Piracicaba, com a criação de uma área de proteção ambiental, contribuirá para a sua proteção, além de preservar os fragmentos existentes e a recuperação da vegetação.

De acordo com a análise de qualidade da água da CETESB, a água que adentra nos limites da futura unidade de conservação apresenta concentrações desconformes de Fósforo Total e de Coliformes, ocasionadas por déficits nos sistemas de coleta e tratamento de esgotos,

assim como pela baixa eficiência de tratamento nas estações, indicando a necessidade de melhora nas condições de saneamento na bacia do rio Piracicaba. As concentrações desconformes para essas duas variáveis também podem indicar o aporte de cargas difusas, em função do uso agrícola do solo no entorno da bacia.

Os resultados indicaram que a condição hidrodinâmica da região conhecida como minipantanal paulista, no bairro rural Tanquã, ambiente de transição, correspondente às áreas úmidas sobre influência do reservatório de Barra Bonita, com predomínio de lagoas e alagados, desempenha um importante serviço ambiental para a melhora da qualidade da água do Rio Piracicaba. De forma que no trecho de jusante, a classificação da água é Boa, tendo uma redução da carga orgânica (DBO), de nutrientes (Fósforo e Nitrogênio) e de contaminantes microbiológicos (Coliformes), oriundos das contribuições de montante. Além disso, a preservação desta região contribuirá no controle do aporte de sedimentos, principalmente, na época chuvosa.

Portanto, os resultados obtidos justificam a inclusão da várzea do Tanquã dentro dos limites da futura unidade de conservação.

6. GEOMORFOLOGIA, PERIGO, VULNERABILIDADE, RISCOS

6.1. GEOMORFOLOGIA

O presente relatório apresenta a metodologia e os resultados obtidos para a elaboração de breve diagnóstico do Meio Físico na área de Geomorfologia, como apoio a criação de unidade de conservação na região do Barreiro Rico-Tanquã. Foram coletados apenas dados secundários e produtos básicos (cartas derivadas de modelos digitais de terreno) para a caracterização da área geográfica da Unidade de Conservação proposta. Recomenda-se estudos de detalhe e mais aprofundados para elucidar questões que possam surgir durante as etapas subsequentes, quando da elaboração do Plano de Manejo e para a gestão da futura Unidade de Conservação.

6.1.1. Considerações inicias sobre a compartimentação geomorfológica regional utilizada no presente trabalho

A compartimentação geomorfológica regional da área de estudo baseou-se na classificação de ROSS & MOROZ (1996, 1997), utilizada para a elaboração do Mapa Geomorfológico do Estado de São Paulo, escala 1:500.000, que aplica os conceitos de morfoestrutura, morfoescultura e a taxonomia das formas de relevo. As morfoestruturas dizem respeito às características estruturais, litológicas e geotectônicas, enquanto as morfoesculturas referemse aos produtos morfológicos de influência climática atual e pretérita. Segundo ROSS & MOROZ (1996), as morfoesculturas são representadas pelo modelado ou morfologias ou tipologias de formas geradas sobre diferentes morfoestruturas através do desgaste erosivo promovido por ambientes climáticos diferenciados tanto no tempo quanto no espaço.

A classificação taxonômica de ROSS & MOROZ (1996), considera seis táxons:

- 1° Táxon Unidades Morfoestruturais correspondem as grandes unidades estruturais e, como estão associadas às suas gêneses e com suas idades, definem na superfície terrestre padrões de relevo que lhe são característicos;
- 2º Táxon Unidades Morfoesculturais representadas por planaltos, serras e depressões contidas em cada uma das morfoestruturas;
- 3º Táxon Unidades Morfológicas ou dos Padrões de Formas Semelhantes/Tipos de Relevo (altimetria, declividades das vertentes, morfologias dos topos e vertentes, dimensões interfluviais e entalhamento dos canais de drenagem). Cada unidade foi codificada pelo

conjunto de letras (formas denudacionais e de acumulação) e números arábicos (grau de entalhamento dos vales e dimensão interfluvial média). Formas denudacionais (D) são acompanhadas da informação do tipo de modelado dominante: convexo (c), tabular (t), aguçado (a), plano (p). As formas de acumulação (A) são seguidas do tipo de gênese: planície (p), fluvial (f), marinha (m), lacustre (l). O "grau de entalhamento dos vales" referese à profundidade que o canal tem escavado do seu leito, enquanto a "dimensão interfluvial média", à distância média entre os cursos d'água (vide matriz a seguir – Tabela 6.1.1).

Tabela 6.1.1: Matriz dos índices de dissecação do relevo.

	o	Densidade de drenagem / Dimensão Interfluvial Média							
			(Classes)						
		Muito baixa (1)	Baixa (2)	Média (3)	Alta (4)	Muito alta (5)			
		>3.750 m	1.750 a 3.750 m	750 a 1.750 m	250 a 750 m	< 250 m			
ales	Muito Fraco (1) (< 20 m)	11	12	13	14	15			
Grau de entalhamento dos vales (Classes)	Fraco (2) (20 a 40 m)	21	22	23	24	25			
	Médio (3) (40 a 80 m)	31	32	33	34	35			
	Forte (4) (80 a 160 m)	41	42	43	44	45			
Grat	Muito Forte (5) (> 160 m)	51	52	53	54	55			

⁴º Táxon – formas de relevo encontradas nas Unidades dos Padrões de Formas Semelhantes.

6° *Táxon* – formas menores produzidas pelos processos atuais, ou ainda, pela ação antrópica (sulcos/ravinas/boçorocas/cicatrizes de escorregamentos/depósitos coluviais ou de movimentos de massa/depósitos fluviais/assoreamentos/ aterros entre outros).

O Mapa Geomorfológico do Estado de São Paulo foi elaborado a partir da interpretação de imagens de radar na escala 1:250.000 e contempla os três primeiros táxons.

^{5°} Táxon – tipos de vertentes (convexas/côncavas/retilíneas ou planas, extensão e declividade).

6.1.2. Síntese do contexto geomorfológico da região do Barreiro Rico-Tanquã

A área do Barreiro Rico-Tanquã está inserida em sua totalidade na Bacia Sedimentar do Paraná (Figura 6.1.1), morfoestrutura de formato elipsoidal com maior eixo apontando na direção NNE-SSW (ROSS, 1985). A bacia está assentada sobre o escudo Pré-Cambriano entre os estados de Minas Gerais, Mato Grosso, São Paulo, Paraná, Santa Catarina e em áreas de países vizinhos (Uruguai, Paraguai e Argentina).

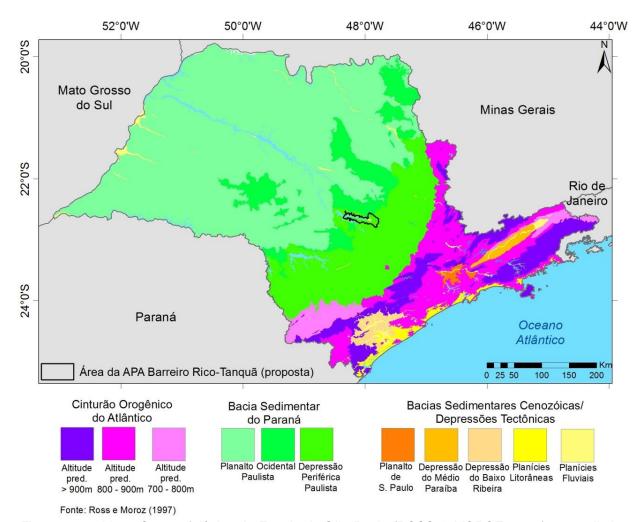


Figura 6.1.1: Mapa Geomorfológico do Estado de São Paulo (ROSS & MOROZ, 1997) com o limite proposto para a área de estudo.

A epirogênese ocorrida durante o Cenozoico na Plataforma Sul-americana associada a alternância climática (climas úmidos e secos) proporcionou a ocorrência de longos processos erosivos que foram responsáveis pelo surgimento das unidades morfoesculturais Depressão Periférica Paulista e Planalto Ocidental Paulista (ROSS & MOROZ, 1997). Conforme o mapa geológico de Perrotta *et al.* (2006), predominam na área de estudo as

rochas da Formação Piramboia (folhelho, arenitos fino a síltico-argiloso). No Leste, afloram rochas da Formação Corumbataí (arenito, siltito, calcário), depósitos colúvio-eluvionares (areia, argila) associados a relevo colinoso com topos amplos e alongados (*glacis*, no sentido de QUEIROZ NETO & JOURNAUX, 1978) e depósitos aluvionares (areia, argila e cascalho) associados ao Rio Piracicaba. Localmente, no extremo sudeste e, ocorrências restritas das formações Serra Geral (derrames basálticos) e Botucatu (quartzo-arenito), que sustentam as maiores elevações (Figura 6.1.2).

A maior parte da área da proposta (Figura 6.3) está situada na morfoescultura Depressão Periférica Paulista, com altitudes que variam de 600 a 750 m, sendo que as maiores altitudes estão nas escarpas do *front da cuesta*, feição sustentada pelos derrames basálticos ocorridos entre os períodos Jurássico e Cretáceo (ROSS e MOROZ, 1997).

A Depressão Periférica é dividida em três setores, os quais são distintos em função das características das principais redes de drenagem que compõem a Depressão Periférica; neste contexto, a proposta está localizada na unidade Depressão do Médio Tietê.

A Depressão do Médio Tietê está situada entre as morfoesculturas Planalto de Jundiaí (a leste), Planalto Centro Ocidental, Planalto Residual de Botucatu e Planalto de São Carlos (estes a oeste) e a Depressão de Moji-Guaçu (a norte).

As formas de relevo são em sua maioria denudacionais, com colinas de topos amplos, tanto convexos (dc_{12} , dc_{13} , dc_{14} , dc_{23} , dc_{33} , dc_{34}) quanto tabulares (dt_{11} e dt_{12}). Em um setor nas áreas mais elevadas da área da proposta, na divisa entre os municípios de Piracicaba e São Pedro, há uma área de topos aguçados (dc_{22}) (Figura 6.1.3)

Um pequeno setor da área de estudos está situado no Planalto Residual de São Carlos na transição entre o Planalto Central Ocidental e a Depressão Periférica (ROSS & MOROZ, 1997). Esta morfoescultura têm altitudes que variam entre 600 e 900 m e declividades entre 10% a 30% (aproximadamente de 6° a 17°).

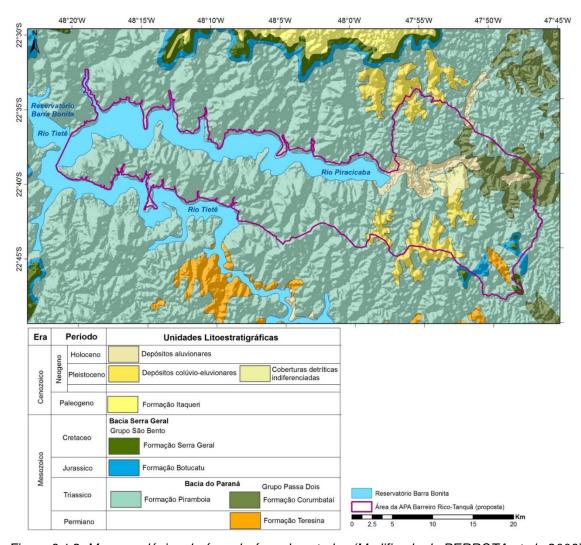


Figura 6.1.2: Mapa geológico da área da área de estudos (Modificado de PERROTA et al., 2006).

Ao longo do Rio Piracicaba (Figura 6.1.4), em um trecho a montante do represamento do Rio Tietê (Reservatório Barra Bonita), destaca-se uma extensa planície fluvial (Apf). A presença localizada leva-nos a considerar que a planície do Rio Piracicaba deveria se prolongar a jusante do Reservatório Barra Bonita. Desta forma, torna-se interessante a preservação do remanescente das feições fluviais do baixo curso do Rio Piracicaba.

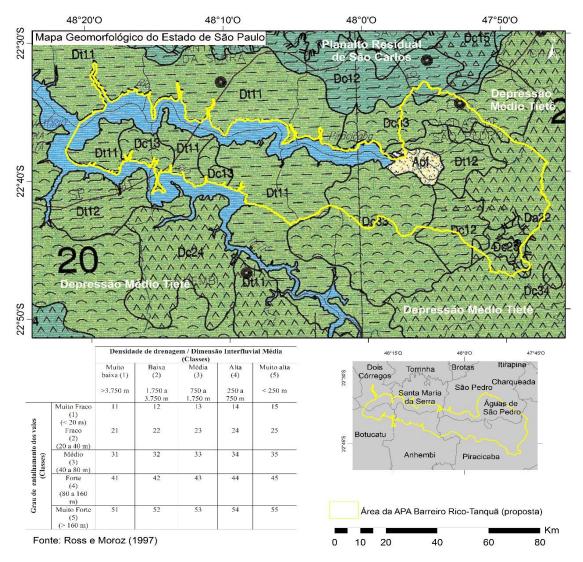


Figura 6.1.3: Mapa Geomorfológico de ROSS & MOROZ (1997) com o limite proposto para a área do Barreiro Rico-Tanquã. Vide "Matriz de dissecação do relevo" (Tabela 1) para o entendimento dos números associados às unidades dos Padrões de Formas Semelhantes.

Figura 6.1.4: Em destaque, extensa planície fluvial (Apf) ao longo do baixo curso do rio Piracicaba. Observa-se que este trecho preserva algumas das características do rio antes da construção do Reservatório de Barra Bonita. Fonte: Google Earth.

A partir da análise integrada da declividade/hipsometria e das unidades pedológicas (ROSSI, 2017) (Figuras 6.1.5 e 6.1.6) foi possível estabelecer algumas relações preliminares.

Nos setores com declividades mais acentuadas (acima de 12º) e altitudes acima de 450 m, predominam Neossolos litólicos (RL). Nos topos e vertentes suaves da área (declividades até 7º e altitudes acima de 550 m) predominam os Latossolos Vermelhos (LV), caracterizados por serem solos profundos e bem drenados. Na classe de declividade entre 4º e 12º e altitudes até 520 m, ocorrem Argissolos Vermelho-Amarelo (PVA), que são solos profundos associados a relevos ondulados (OLIVEIRA et al., 1999; EMBRAPA, 2013). Em declividades entre 2º e 7º, entre 520 e 580 m de altitude, são encontrados os Latossolos Vermelho-Amarelos (LVA), caracterizados por serem profundos e muito bem drenados com características uniformes de cor, textura e estrutura em profundidade OLIVEIRA et al., 1999; EMBRAPA, 2013). Em declividades de 2º a 7º e altitudes acima de 580 m, ocorrem Neossolos quartzarênicos (RQ), que correspondem a solos rasos, com predomínio de areias quartzosas e com baixa capacidade de retenção de água (OLIVEIRA et al., 1999;

EMBRAPA, 2013). Nas planícies (declividades entre 0 e 2º e altitudes até 500 m) ocorrem os Gleissolos háplicos (GX), solos mal drenados, cujos atributos estão associados ao material transportado de setores a montante da vertente (EMBRAPA, 2013).

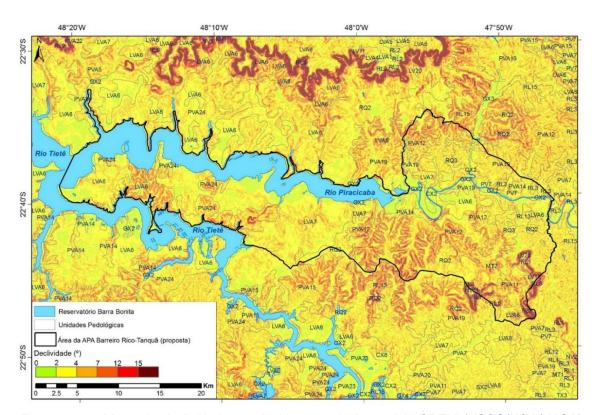


Figura 6.1.5: Mapa de declividade, produzido a partir de modelo SRTM (USGS/NGA/NASA), e sua associação com as unidades pedológicas (ROSSI, 2017).

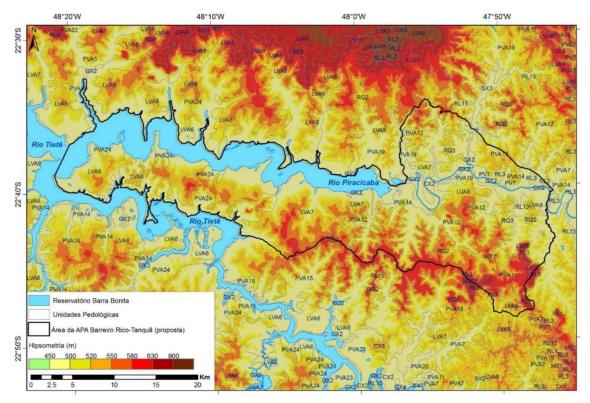


Figura 6.1.6: Mapa hipsométrico, produzido a partir de modelo SRTM (USGS/NGA/NASA), e sua associação com as unidades pedológicas (ROSSI, 2017).

6.2. Perigos, Vulnerabilidade, Riscos

A presente informação técnica tem como objetivo apresentar informações sobre perigos, vulnerabilidade e riscos em resposta à solicitação da Fundação Florestal e Secretaria Estadual do Meio Ambiente, para fornecimento de breve caracterização do meio físico da área geográfica do Barreiro Rico-Tanquã, situada na região limítrofe dos municípios de Águas de São Pedro, Anhembi, Botucatu, Dois Córregos, Piracicaba, Santa Maria da Serra e São Pedro, na confluência dos rios Tietê e Piracicaba (Figura 6.2.1).

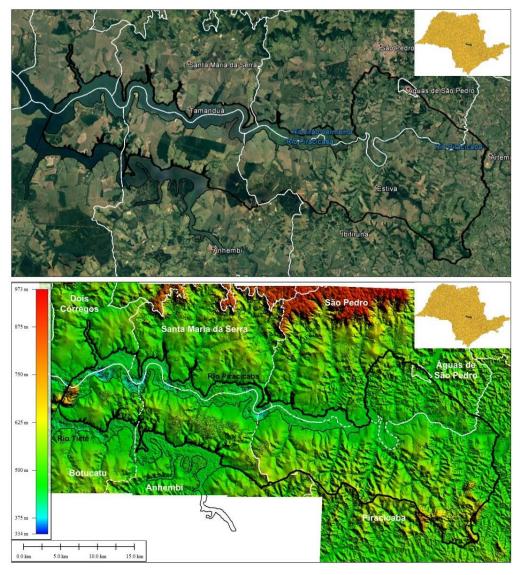


Figura 6.2.1. Localização da área da proposta de criação de unidade de conservação. Fontes: Google Earth (imagem) e EMPLASA (2010, Modelo Digital de Superfície). Figura elaborada pelos autores.

6.2.1. Caracterização do meio físico

A área de estudos, com cerca de 700km², situa-se na unidade morfoestrutural da Bacia Vulcano Sedimentar do Paraná, contendo também a morfoestrutura Bacias Sedimentares Cenozóicas. O domínio morfoescultural é o da Depressão Periférica, incluindo também planícies fluviais. Os tipos de relevo predominantes são os denudacionais convexos com graus de entalhamento dos vales da classe muito fraco e ampla variação da densidade de drenagem, desde muito baixa a muito alta e o tipo agradacional planície fluvial (ROSS e MOROZ, 1997; Figura 6.2.2).

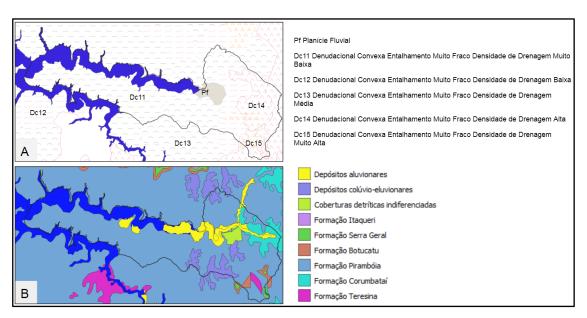


Figura 6.2.2. Caracterização geológica-geomorfológica da área. A: Mapa geomorfológico (ROSS e MOROZ 1997). Mapa Geológico (CPRM, 2006; SÃO PAULO, 2017). Figura elaborada pelos autores.

No interior da área proposta há amplo predomínio da ocorrência da Formação Piramboia, constituída por arenitos de idade triássica (entre 250 a 200 milhões de anos atrás) e produto da deposição em sistemas eólicos úmidos, com abundância de interdunas úmidas e fácies fluviais subordinadas (CÔRTES e PERINOTTO, 2015). Essa unidade é parte integrante do Aquífero Guarani, um dos maiores aquíferos do mundo. Destacam-se, ainda, na região leste da área, a ocorrência de depósitos aluvionares e colúvio-eluvionares, coberturas detríticas indiferenciadas e a formação Corumbataí (siltitos argilosos). De ocorrência mais restrita, no sudeste da área ocorrem as formações Teresina (argilitos, siltitos e arenitos muito finos e finos), Botucatu (arenitos finos a grossos, de coloração avermelhada com estratificações cruzadas de médio a grande porte) e Serra Geral (basaltos toleíticos e andesi-basaltos toleíticos).

O mapa regional de Cobertura da Terra elaborado com base em imagens de 2010 (Figura 6.2.3) mostra um predomínio de cobertura herbáceo-arbustiva (54% da área). A cobertura arbórea, abrangendo cerca de 18% da área ocorre, na região leste, predominantemente ao longo das drenagens, enquanto na região central e leste, são manchas poligonais, possivelmente relacionadas à silvicultura. Corpos d'água perfazem 101 km2 (14% da área) e solo exposto cerca de 12%. As áreas edificadas, abrangendo o núcleo central do município de Águas de São Pedro e ocupações esparsas ocupa apenas 2% da área. (SÃO PAULO, 2017).

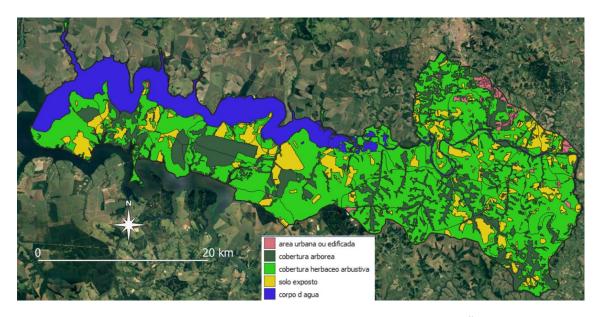


Figura 6.2.3. Caracterização da cobertura da terra da área de estudos (SÃO PAULO, 2017). Figura elaborada pelos autores.

6.2.2. Perigos, Vulnerabilidade e Riscos

O <u>mapa de perigo de escorregamento</u> planar raso (Figura 6.2.4) mostra na área de estudos o predomínio das classes baixa a nula, ocorrendo, no entanto, algumas regiões de perigo alto, associada a escarpas de relevos tabulares e morros alongados situados na extremidade sudeste da área. O <u>perigo de inundação</u> (Figura 6.2.5) ocorre ao longo do rio Piracicaba, seus reservatórios e afluentes e predominam classes baixa a moderada, ocorrendo um perigo alto na região central da área junto ao rio Piracicaba.

As áreas edificadas, abrangem o núcleo central do município de Águas de São Pedro e ocupações esparsas ocupando apenas 2% da área. A <u>vulnerabilidade</u> baixa ocorre no núcleo urbano de Águas de São Pedro, enquanto a classe moderada ocorre na periferia deste núcleo e a alta nas edificações do tipo residencial-comercial-serviço dispersos no território (Figura 6.2.6). Para o <u>risco de escorregamento</u> (Figura 6.2.7) predominam as classes muito baixa a baixa, ocorrendo poucas ocupações com risco alto, geralmente áreas isoladas, exceto, pequeno bairro situado junto às rodovias SP-147 e rodovia Engenheiro João Toselho. O <u>risco de inundação</u> (Figura 6.2.8) foi mapeado apenas em três regiões com pequena expressividade, nas classes muito baixa a moderada.

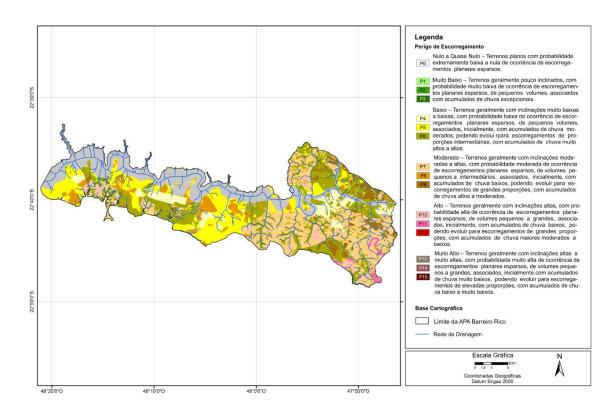


Figura 6.2.4. Mapa de Perigo de Escorregamento (SÃO PAULO, 2017). Figura elaborada pelos autores.

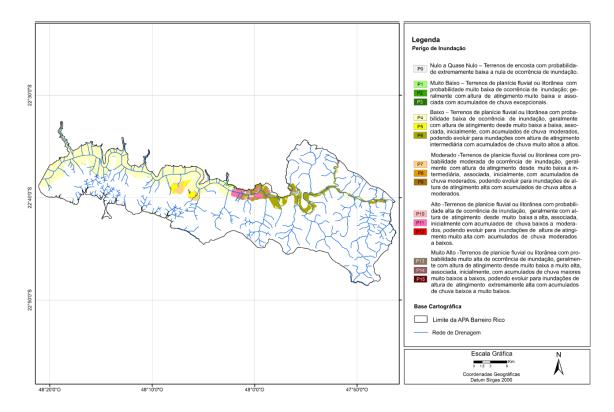


Figura 6.2.5. Mapa de Perigo de Inundação (SÃO PAULO, 2017). Figura elaborada pelos autores

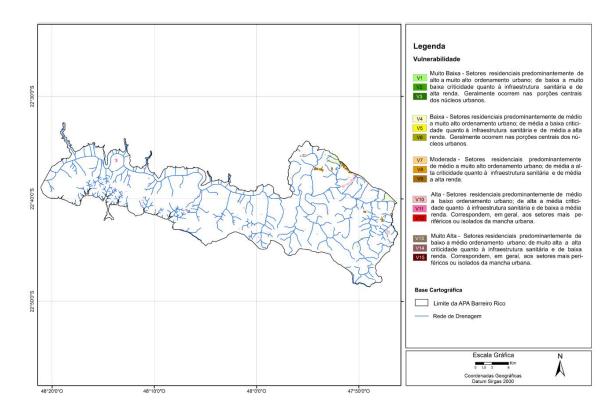


Figura 6.2.6. Mapa de Vulnerabilidade de Áreas de Uso Residencial/Comercial/Serviço (SÃO PAULO, 2017). Figura elaborada pelos autores

Figura 6.2.7. Mapa de Risco de Escorregamento em Áreas de Uso Residencial/Comercial/Serviço (SÃO PAULO, 2017). Figura elaborada pelos autores.

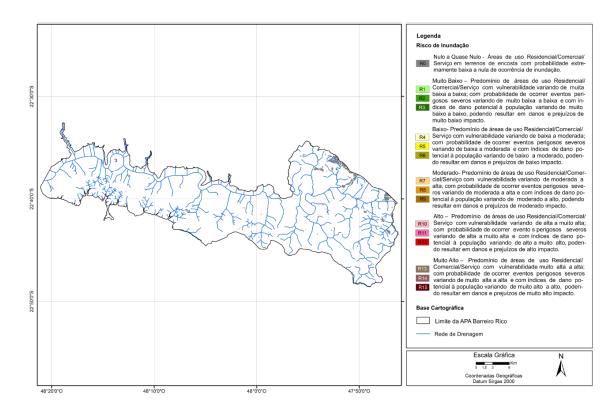


Figura 6.2.8. Mapa de Risco de Inundação em Áreas de Uso Residencial/Comercial/Serviço (SÃO PAULO, 2017). Figura elaborada pelos autores

6.3. Conclusões

Análises regionais dos perigos, vulnerabilidade e riscos elaboradas para o Estado de São Paulo, permitiram uma avaliação geral para a área proposta de criação de unidade de conservação na região do Barreiro Rico-Tanquã. Destacam-se na análise:

- área de afloramento e ocorrência do Aquífero Guarani, de importância estratégica para a política estadual de recursos hídricos;
- corpos d'águas superficiais perfazem 101 km² (14% da área) da área de estudos, constituindo um aspecto de destaque da região;
- a cobertura arbórea abrange cerca de 18% da área com destaque para a importante ocorrência de matas ciliares;
- há um predomínio de baixa criticidade para a ocorrência de escorregamentos planares rasos, ainda que certas regiões associadas a escarpas de relevos tabulares e morros alongados requeiram atenção no planejamento territorial;
- o perigo de inundação ocorre ao longo da planície de inundação do rio Piracicaba e indica que restrições devem ser tomadas para a ocupação de suas margens.

Atualmente o risco a esses processos têm pequena abrangência, no entanto, observa-se que algumas ocupações podem ser atingidas por fenômenos de inundação e escorregamento.

7. SOLOS E FRAGILIDADE AMBIENTAL

7.1. Introdução

Um dos elementos do meio físico utilizados para caracterização ambiental, tanto na proposição de criação de Unidades de Conservação, quanto no manejo é o mapeamento pedológico, que aborda, além da espacialização dos solos, suas potencialidades e restrições podendo indicar fragilidades. Nesse sentido, diversos trabalhos vêm sendo elaborados no estado de São Paulo com essa propositura, pelos órgãos que administram as Unidades. Como exemplo trabalhos podem esses ser acessados http://iflorestal.sp.gov.br/planos-manejo-gestao/; http://fflorestal.sp.gov.br/paginainicial/planos-de-manejo/; Zornoff et al.(2011); Rossi et al. (2014) e Cintra et al. (2016).

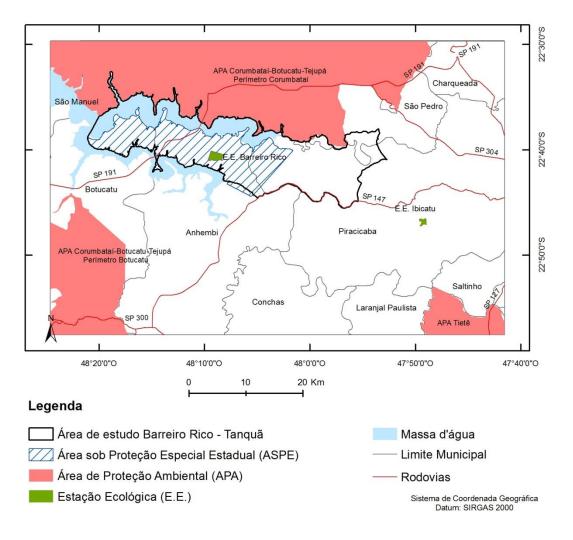


Figura 7.1. Mapa de localização da área de estudo Barreiro Rico – Tanquã.

A região estudada encontra-se entre as Áreas de Proteção Ambiental (APAs) de Corumbataí-Botucatu-Tejupá, perímetros de Corumbataí e de Botucatu, e Tietê, abrange a

Estação Ecológica Barreiro Rico e a Área Sob Proteção Especial (ASPE) Barreiro Rico. Está inserida em parte das Folhas Topográficas (1:250.000) de Bauru (SF-22-Z-B) e de Campinas (SF-23-Y-A), com aproximadamente 44 mil ha (Figura 7.1). Trata-se de área que contém importantes fragmentos remanescentes de vegetação natural, que abrigam espécies da flora e fauna ameaçadas, como os primatas Muriqui e Bugio, além de abranger áreas sazonalmente inundáveis, onde se formam brejos que recebem diversas aves migratórias.

Quanto aos solos, a área apresenta mapeamentos, como o de Oliveira et al. (1999) na escala de 1:500.000 de nível generalizado; mapa de semidetalhe na escala de 1:100.000 da Folha de Piracicaba (SF-23-Y-A-IV), que recobre parte da área, elaborado pelo Instituto Agronômico de Campinas-IAC (Oliveira et al., 1987) e material produzido pelo EIA/RIMA do Aproveitamento múltiplo Santa Maria da Serra (SECRETARIA ESTADUAL DE LOGÍSTICA E TRANSPORTES, 2013). A proposta objetivou melhorar as informações pedológicas, incluindo o mapeamento para a área, buscando informações que permitissem identificar potencialidades e restrições, e que definissem fragilidades. Recentemente, Rossi (2017) apresenta um mapa que compila os trabalhos citados, mas com adaptações, que serviu de base para a caracterização pedológica aqui apresentada.

7.2. Material e Métodos

Foi realizada revisão bibliográfica e cartográfica para levantamento de informações sobre os elementos do meio físico da área: as características geológicas (Almeida et al., 1981; Bistrichi et al., 1981; Perrotta et al., 2005; Landim et al., 1982 e 1984), geomorfológicas (Ponçano et al., 1981; Ross & Moroz, 1997), pedológicas (Oliveira et al., 1987; Oliveira et al., 1999; Secretaria Estadual de Logística e Transportes, 2013; Rossi, 2017) e geotécnicas (Nakazawa et al., 1994).

Para a pedologia optou-se pelo material compilado de Rossi (2017) e Secretaria Estadual de Logística e Transportes (2013), como base para a fotointerpretação de ortofotos digitais de 2010/2011, cedidas pela EMPLASA, que propiciaram o refinamento de delineamentos e a inserção de novas manchas de solos e áreas de encharcamento sazonal, observando-se padrões de relevo, drenagem e vegetação, seguindo Buringh (1960), para posterior identificação e análise em campo. O processo foi executado em programa georreferenciado ArcGis 10.3, no sistema geográfico, Datum SIRGAS 2000.

A partir da interpretação visual das imagens de alta resolução, composição colorida RGB, referente ao período de 2016/2017 foi possível de marcar os processos erosivos lineares mais expressivos na área, buscando identificá-los e sempre que possível espacializá-los. As erosões apresentam-se nas imagens como marcas lineares ou areolares, de coloração

esbranquiçada e quase sempre de formato irregular, seguindo predominantemente os cursos d'água, como exemplificado na Figura 7.2.

Figura 7.2. Exemplo de erosões lineares na área de estudo Barreiro Rico - Tanquã.

Como material auxiliar na caracterização e na definição de delineamentos de solos, contouse com mapa clinográfico elaborado por meio de algoritmos do programa ArcGis 10.3, dividido em 6classes (0-2, 2-8, 8-15, 15-30, 30-45; >45%) que ressaltam as planícies de inundação e as rupturas de relevo, com altas declividades.

Para a análise de suscetibilidade dos solos seguiu-se os procedimentos adotados por Ross (1990) e Mattos et al. (1996), elaborando uma tabela síntese do potencial e restrição dos solos, indicando fragilidades, tendo em vista a dinâmica natural e a susceptibilidade à interferência antrópica. Foi utilizada a classificação de fragilidade "baixa", "média", "alta", de acordo com características como textura e profundidade do solo, morfologia do relevo, declividade, encharcamento e litologia. A classe alta foi subdividida em alta 1 (suscetibilidade à processos de erosão) e alta 2 (suscetibilidade à processos de assoreamento, inundação e contaminação).

7.3. Resultados

7.3.1. Solos

Como resultado é apresentado o mapa pedológico (Figura 7.3) adaptado de Rossi (2017), onde se identificaram 14 classes de solos, dentre as quais 7 classes de unidades de mapeamento simples e 7 classes de unidades compostas (em associação). De modo geral a área apresenta Cambissolos, Gleissolos (Háplicos e Melânicos), Latossolos Vermelho-Amarelos, Nitossolos, Argissolos Vermelho-Amarelos, Neossolos (Litólicos e Quartzarênicos) e Organossolos. Na Tabela 7.1 são apresentadas as unidades de mapeamento que ocorrem no setor estudado com suas respectivas extensões em área e porcentagens de ocorrência.

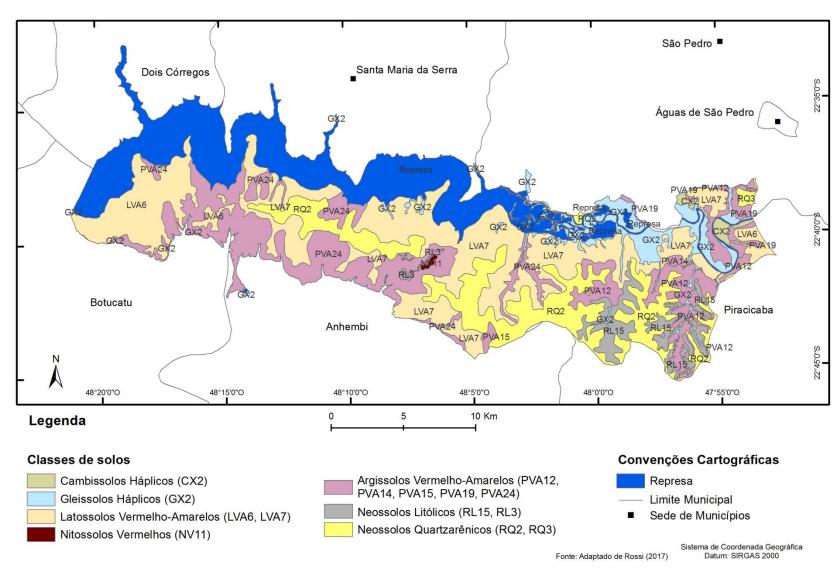


Figura 7.3. Mapa de solos da área de estudo Barreiro Rico - Tanquã.

Tabela 7.1. Demonstrativo de área das unidades mapeadas.

TIPOS DE SOLO			ÁRE	4
Descrição (ROSSI, 2017)	Símbolo da unidade	Composição	ha	%
CAMBISSOLOS			304,33	0,69
CAMBISSOLO HÁPLICO To Distrófico A moderado ou proeminente, textura indiscriminada, bem a imperfeitamente drenado, fase relevo suave ondulado	CX2	СХ	304,33	0,69
GLEISSOLOS			2.490,74	5,67
GX2 - Complexo Indiscriminado de GLEISSOLO HÁPLICO ou MELÂNICO com ou sem ocorrência de ORGANOSSOLO, fase relevo plano	GX2	GX/GM+O	2.490,74	5,67
LATOSSOLOS			13.056,83	29,73
LATOSSOLO VERMELHO-AMARELO Distrófico típico, A moderado ou fraco, textura média, álico ou não álico, fase relevo suave ondulado e ondulado	LVA6	LVA	3.394,10	7,73
Associação de LATOSSOLO VERMELHO- AMARELO/ VERMELHO Distrófico típico, A moderado textura argilosa ou média, álico + NEOSSOLO QUARTZARÊNICO Órtico típico, ambos fase relevo suave ondulado e ondulado	LVA7	LVA+RQ	9.662,73	22,00
NITOSSOLOS			42,50	0,10
Associação de NITOSSOLO VERMELHO Distro/Eutroférrico típico, A moderado, textura argilosa ou muito argilosa + ARGISSOLO VERMELHO-AMARELO abrupto, A moderado textura arenosa/argilosa ou média/argilosa, ambos fase relevo ondulado e forte ondulado	NV11	NV+PVA	42,50	0,10
ARGISSOLOS			9.308,58	21,2
Associação de ARGISSOLO VERMELHO-AMARELO abrúptico ou não abrúptico, arênico ou espessoarênico, A moderado ou proeminente, textura arenosa/média + NEOSSOLO LITÓLICO textura média, fase sedimentos Grupo Tubarão e Passa Dois, ambos Eutróficos/Distróficos, A moderado ou proeminente, relevo ondulado	PVA12	PVA+RL	2.051,82	4,67

TIPOS DE SOLO			ÁRE	Ą
ARGISSOLO VERMELHO-AMARELO Distrófico típico, álico ou não álico, A moderado ou fraco textura arenosa/média ou média, fase relevo ondulado e suave ondulado	PVA14	PVA	73,28	0,17
ARGISSOLO VERMELHO-AMARELO Distrófico típico, A moderado ou proeminente, textura média, argilosa ou média/argilosa, fase relevo ondulado e forte ondulado	PVA15	PVA	114,05	0,26
ARGISSOLO VERMELHO-AMARELO Distrófico espessoarênicoabrúptico, A moderado, textura arenosa/média, álico, fase relevo ondulado	PVA19	PVA	815,34	1,86
Associação de ARGISSOLO VERMELHO- AMARELO abrúpticotext. arenosa/média + ARGISSOLO VERMELHO AMARELO text. arenosa/média e média ambos Distróficos, A moderado, fase relevo ondulado	PVA24	PVA+PVA	6.254,09	14,24

Continuação

TIPOS DE SOLO			ÁRE	4
Descrição (ROSSI, 2017)	Símbolo da unidade	Composição	ha	%
NEOSSOLOS LITÓLICOS			1.741,00	3,97
NEOSSOLO LITÓLICO Eutrófico/Distróficio A moderado ou proeminente, textura média, fase substrato sedimentos do Grupo Passa Dois, relevo ondulado	RL3	RL	73,49	0,17
Associação de NEOSSOLO LITÓLICO Eutrófico/Distrófico, textura média + ARGISSOLO VERMELHO-AMARELO Eutrófico/Distrófico abrúptico ou não abrúptico, espessoarênico, textura arenosa/média, pouco profundo, ambos A moderado ou proeminente, fase relevo ondulado	RL15	RL+PVA	1.667,51	3,80
NEOSSOLOS QUARTZARÊNICOS			6.445.29	14,68
NEOSSOLO QUARTZARÊNICO Órtico típico, A moderado, álico, fase relevo ondulado	RQ2	RQ	6.319,45	14,39

TIPOS DE SOLO			ÁRE	4
Associação de NEOSSOLO QUARTZARÊNICO Órtico típico, A moderado, álico + LATOSSOLO VERMELHO-AMARELO/VERMELHO Distrófico típico, A moderado, textura média, ambos fase relevo ondulado e suave ondulado	RQ3	RQ+LVA/LV	125,84	0,29
Rios, represas e lagoas			10.540,71	23,99
Total			43.929,98	

Considerando-se que cada unidade de mapeamento composta apresenta 60% do primeiro elemento e 40% do segundo elemento classificado ou relação de 50/30/20%, quando com três elementos (Tabela 7.2), tem-se a seguinte proporção de ordens de solo no mapeamento:

Tabela 7.2. Extensão e distribuição das Ordens de solos referentes à área de estudo.

		Área		
Ordem de solo	Unidades de mapeamento	Absoluta (ha)	Relativa ao total (%)	
CAMBISSOLO	CX2	304,33	0,69	
GLEISSOLO	1° componente GX2	1.494,44	3,39	
LATOSSOLO	LVA6+1° componente LVA7+2° componente RQ3	9.242,07	20,98	
NITOSSOLO	1° componente NV11	25,50	0,06	
ARGISSOLO	1° componente PVA12+PVA14+PVA15+PVA19+PVA24+2 ° componente NV11+2° componente RL15	9.171,86	20,82	
NEOSSOLO LITÓLICO	RL3+1º componente RL15+2º componente PVA12	1.894,72	4,30	
NEOSSOLO QUARTZARÊNICO	RQ2+RQ3+2° componente LVA7	10.260,05	23,29	
ORGANOSSOLO	2° componente GX2	996,30	2,26	
REPRESAS		10.540,71	23,99	
Total		43.929,98	100	

Conforme demonstram as tabelas, as ordens de solo predominantes na área são os Latossolos (29%), Argissolos (21%), o Neossolo Quartzarênico (14%) caracterizando aproximadamente 64% de toda a área.

Os Cambissolos são solos minerais, em estágio intermediário de intemperismo, ou seja, que não sofreram avançados processos de alteração físicas e químicas apresentando, portanto, baixo desenvolvimento pedogenético (Oliveira, 2008).

A área abrange apenas uma unidade de Cambissolo que se apresenta de forma isolada (CX2) na porção Norte, em relevo suave ondulado, de baixa declividade.

Os Gleissolos são solos minerais, hidromórficos, em sua maioria, localizados em ambientes com má drenagem, o que gera excesso de água durante grande parte do ano, geralmente ocorrendo em planícies aluviais (Oliveira, 2008). Na área há presença de Gleissolos com ou sem ocorrência de Organossolos (GX2) e Gleissolos Háplicos ou Melânicos Eutróficos (GX12).

Os Gleissolos ocorrem em diversos pontos no limite da área, mas predomina na porção noroeste próximo à represa em terrenos planos de baixa declividade (Figura 7.4.

Figura 7.4. Gleissolo Háplico nas áreas brejosas do Tanquã.

Já os Latossolos apresentam avançado estágio de intemperismo e baixa capacidade de troca de cátions, sendo geralmente, pouco férteis (Oliveira, 2008). A área apresenta 2 (duas) unidades de Latossolos, ambos do tipo Vermelho - Amarelo (LVA6 e LVA7).

Ambos são distróficos, contudo, um se apresenta de forma isolada (LVA6), sendo caracterizado por apresentar textura média. Já o segundo (LVA7), apresenta textura argilosa ou média, e ocorre de forma associada com Neossolo Quartzarênico.

Na área, ocorrem Latossolos Vermelho-Amarelos de textura argilosa ou média, em relevos suave ondulado, ondulado e forte ondulado.

Os Latossolos também ocorrem por toda área em forma de pequenas manchas, geralmente em relevo de baixa declividade. Contudo, destaca-se uma grande mancha na porção centro-oeste da área, também em relevo plano (LVA7) (Figura 7.5).

Figura 7.5. Relevo de colinas com Latossolos Vermelho-Amarelos de textura média.

Os Nitossolos são solos minerais, com textura argilosa ou muito argilosa, reconhecidos pela estruturação em blocos subangulares e prismas bem desenvolvidos. Em geral são homogêneos, apresentando pequena diferença textural, e possuem boa permeabilidade, apesar de argilosos (Oliveira, 2008). A área apresenta apenas uma classe de Nitossolo na forma composta, em associação com Argissolo Vermelho-Amarelo (NV11).

Os Nitossolos também apresentam baixa ocorrência na área (cerca de 0,05%) na parte Leste em relevo declivoso. Ocorre na área Nitossolo Vermelho de textura argilosa ou muito argilosa, em relevo ondulado e forte ondulado, em zona de média e alta declividade.

Os Argissolos têm como característica serem solos minerais que apresentam horizonte B textural abaixo do horizonte A ou E, com elevado teor de argila, apresentando nítida diferenciação de horizontes (Oliveira, 2008). Segundo Rossi (2017), há 5 (cinco) unidades de Argissolos na área, 2 (duas) apresentam-se compostas, em associação com Neossolo Litólico (PVA12), ou em associação de Argissolos, mas com diferentes características (PVA24). Três apresentam-se em unidades simples (PVA14, PVA15, PVA19).

Dentre os Argissolos Vermelho-Amarelos, 2 (dois) apresentam mudança textura abrupta (PVA19 e PVA24) e uma pode ou não apresentar mudança textural abrupta (PVA12), o que pode gerar maior suscetibilidade aos processos erosivos. Além disso, outras duas unidades não se classificam como abrupta, se caracterizando por serem solos distróficos típicos (PVA14 e PVA15).

Os Argissolos são a segunda unidade de solos de maior ocorrência na área, predominando tanto na porção central em que ocorre relevo de maior declividade quanto na porção oeste em que predomina relevo mais plano.

Na área ocorrem Argissolos Vermelho-Amarelos de texturas argilosa, média/argilosa, arenosa/média e média em relevos suave ondulado, ondulado e forte ondulado, em áreas de média e alta declividade (Figuras 7.6).

Figura 7.6. a) Área de ocorrência de Argissolos na base do morro residual do mirante; b) Argissolo Vermelho-Amarelo textura arenosa/média.

Já os Neossolos são solos minerais, pouco desenvolvidos, que sofreram reduzido processo de intemperismo e apresentam por isso, pouca profundidade, no caso dos Neossolos Litólicos, enquanto os Neossolos Quartzarênicos são profundos e arenosos (Oliveira, 2008). De acordo com Rossi (2017), a área apresenta 4 (quatro) classes de Neossolos, sendo duas Quartzarênicos (RQ2 e RQ3) e 2 (duas) Litólicos (RL3 e RL15). Podem se apresentar de forma isolada (RL3 e RQ2) ou em associação com Latossolo Vermelho-Amarelo/Vermelho (RQ3), e Argissolo Vermelho-Amarelo (RL15).

O Neossolo Litólico apresenta restrição no uso agrícola pelo reduzido volume de água uma vez que o contato lítico ocorre em pouca profundidade, o que inviabiliza também a fixação das raízes. Ambos os tipos que ocorrem na área se apresentam Eutrófico/Distrófico (RL3 e RL15). Adicionalmente, ambos possuem textura média (RL3 e RL15), associados à litologias de rochas sedimentares (Figura 7.7).

Figura 7.7. Neossolo Litólico textura média em relevo de morro residual substrato arenito.

Já no caso dos Neossolos Quartzarênicos, apresentam reduzido volume de armazenamento de água pela textura arenosa. Além disso, apresentam poucos minerais primárias alteráveis e consequentemente, baixa reserva de nutrientes para as plantas. Ambos os Neossolos Quartzarênicos observados na área apresentam características semelhantes, se diferenciando no fato de que um se apresenta de forma isolada (RQ2) e o outro em associação (RQ3) (Figura 7.8).

Figura 7.8. Relevo colinoso com plantio de cana de açúcar sobre Neossolo Quartzarênico.

Os Neossolos respondem por cerca de 27% da área total. De modo geral, o Neossolo Litólico predomina na porção Leste, enquanto o Neossolo Quartzarênico predomina na porção Centro-Leste da área de estudo.

Os Neossolos Quartzarênicos ocorrem em áreas de relevo suave ondulado e ondulado, enquanto os Neossolos Litólicos ocorrem em relevo ondulado a forte ondulado.

Os Organossolos são constituídos por material orgânico em decomposição, geralmente em ambientes mal drenados ou úmidos, apresentando elevado teor de carbono orgânico. Geralmente possuem coloração preta ou cinza escura. Para a área ora em estudo, Rossi (2017) identificou apenas uma classe composta de Organossolo (GX2) que pode ou não ocorrer em associação com Gleissolo Háplico ou Melânico, em relevo plano, próximas à represa, onde o ambiente é caracterizado pela má drenagem.

De forma geral, a área está localizada em relevo de colinas amplas na Depressão Periférica Paulista, mais precisamente na Depressão do Médio Tietê sobre a Bacia Sedimentar do Paraná. Assenta-se sobre litologias das Formações Pirambóia e Corumbataí.

Na parte leste da área há predomínio de Neossolo Litólico (RL15) e Argissolos, principalmente Argissolo Vermelho-Amarelo (PVA 12 e PVA19) e em menor proporção na porção central, ocorrendo majoritariamente nesse setor, os Neossolos Quartzarênicos (RQ2). Já na porção oeste, dominam os Latossolos, principalmente Latossolos Vermelho-Amarelos (LVA6 e LVA7).

A seguir são apresentadas as Figuras 7.9 a 7.13 que demonstram a distribuição dos solos em relação à posição do relevo.

Figura 7.9. Primeiro plano relevo de colinas com pastagem e domínio de Argissolos Vermelho-Amarelos; no segundo plano, escarpa com vegetação de Floresta Semidecidual a Decidual sobre Neossolos Litólicos.

Figura 7.10. Topos e meia vertentes, com pastagem ou cana de açúcar sobre Argissolos; rupturas de declive com vegetação nativa representando associação de Neossolos Litólicos e Argissolos; e fundo de vale com vegetação herbácea/graminóide sobre Gleissolos.

Figura 7.11. Região do Tanquã. Em primeiro plano, área brejosa com Gleissolos e solos hidromórficos associados; ao fundo nas duas fotos, relevo aplanado onde desenvolvem Latossolos Vermelho-Amarelos e Neossolos Quartzarênicos.

Figura 7.12. Paisagem esquemática da distribuição dos solos na área do Barreiro Rico e Tanquã.

Figura 7.13. Paisagem esquemática da distribuição dos solos na área do Barreiro Rico e Tanquã.

7.3.2. Declive

O mapa de declive (Figura 7.14) apresenta a declividade da área proposta para a área divida em classes.

A maior parte da área caracteriza-se por declividades de até 8%. As maiores declividades, entre 8 e 15%, ou entre 15 e 30%, encontram-se na porção central da área.

As áreas de maior declive coincidem com as áreas de maior incidência de processos erosivos. Isso porque a declividade é um importante fator no controle da concentração do volume e da velocidade do escoamento superficial. Desta forma, áreas com maior declividade tendem a determinar fluxo de água mais intenso, que atrelado com outros fatores pedológicos (textura, estrutura e profundidade), geomorfológicos (forma e comprimento de vertente), de vegetação (cobertura e tipo), podem inferir maior possibilidade de ocorrência desses processos erosivos.

Além disso, é possível notar que as maiores declividades estão atreladas ao predomínio de Argissolos Vermelho-Amarelos tanto na porção Leste quanto na porção Oeste da área, sempre em rupturas de declive, normalmente nas médias e baixas vertentes, acompanhando os cursos d'água. Nesses setores e associados às rupturas fortes de relevo, também ocorrem os Neossolos Litólicos.

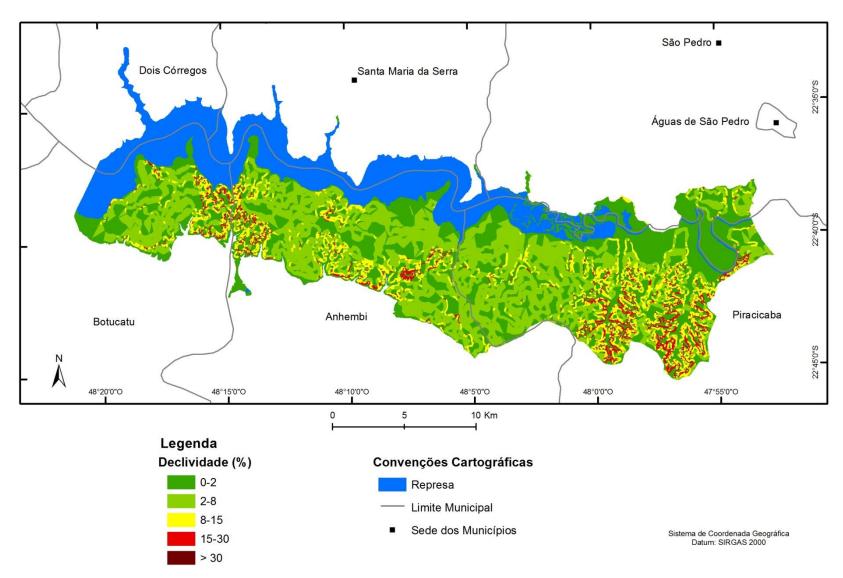


Figura 7.14. Mapa de declividade da área de estudo Barreiro Rico - Tanquã.

7.3.3. Erosão

O escoamento superficial se inicia quando a precipitação supera a capacidade de infiltração da água no solo (saturação do solo), estando esta, atrelada diretamente à permeabilidade do terreno. Segundo Bertoni e Lombardi Neto (1985 apud Salomão, 1999), a permeabilidade do terreno está relacionada com a compactação do solo, intensidade e frequência das chuvas, organização do solo, inclinação, geometria e comprimento das vertentes.

Em princípio, o fluxo é difuso, provocando erosão laminar ou em lençol. Nessa fase, começa a ocorrer uma pequena incisão no solo à medida que o fluxo de água começa a se concentrar, mas ainda não é capaz de transportar os grãos de forma individual. Com a concentração do fluxo de água, a profundidade aumenta, formando pequenos canais que já passam a transportar partículas. A seguir, com o escoamento bem concentrado e definido, já é possível observar o fundo das ravinas que estão se formando. O fluxo de água se torna mais turbulento o que aumenta o processo erosivo (Guerra, 1999).

Assim as ravinas, após longos períodos de fluxos persistindo em uma mesma área, podem evoluir para voçorocas e constituir redes de drenagem (Bryan, 1987 apud Guerra, 1999).

Em 1994 foi elaborado um mapa de Geotecnia do Estado de São Paulo pelo IPT na escala 1:500.000 (Nakasawa et al., 1994). Segundo esse mapa, a maior parte da área está em zona de muito alta ou alta suscetibilidade a processos erosivos. As zonas Leste e Central da área encontram-se predominantemente sobre área de muito alta suscetibilidade à erosão por sulcos, ravinas e voçorocas. São áreas de fragilidade cujo substrato geológico é formado por arenitos do Grupo Bauru, Formação Pirambóia, Formação Botucatu e depósitos recentes. Apresentam sulcos e ravinas pelo simples desmatamento, que podem se desenvolver para voçorocas quando interceptam o nível d'água.

Na zona Oeste da área, Nakasawa et al. (1994) identificam predominantemente alta suscetibilidade à erosão por sulcos, ravinas e voçorocas. Nessas áreas, a erosão está associada a ações antrópicas, relativas a desmatamentos e usos mais intensivos. Ocorrem com menor frequência que na zona anteriormente identificada, mas podem apresentar maior profundidade pela espessura do solo. O substrato rochoso é constituído basicamente por arenitos da Formação Botucatu, Pirambóia e Corumbataí.

Em 1995 Kertzman et al. elaboram um mapa de erosão para o Estado de São Paulo na escala de 1:250.000, através de uma metodologia que consistia na interpretação de fotografias aéreas, elaboração e interpretação de mapas de pedologia, geologia e geomorfologia, verificações de campo, definição de classes de suscetibilidade a partir da predisposição dos terrenos a processos erosivos e análise integrada de fatores geológicos,

geomorfológicos e pedológicos com os dados levantados para enquadramento nas classes de suscetibilidade definidas. Definiram assim, para a área, muito alta suscetibilidade e alta suscetibilidade aos processos erosivos.

Neste trabalho foram utilizadas imagens de 2016/2017 que possibilitaram a fotointerpretação para identificação de diversos pontos em que há processos erosivos lineares (Figura 7.15).

Nota-se que há maior incidência de processos erosivos na parte leste e central da área estudada, justamente onde há predomínio de Argissolo Vermelho-Amarelo e Neossolo Quartzarênico, caracterizados por texturas arenosa e média, de alta erodibilidade.

Na porção oeste a incidência é menor, mas as ocorrências existentes predominam na área de abrangência de associação entre Argissolos Vermelho-Amarelo (PVA24) de textura arenosa ou média, abrupto. Isso porque a transição textural abrupta torna o solo mais suscetível à erosão (Oliveira, 2008).

O resultado da análise das imagens corrobora com os dados da Carta Geotécnica de IPT (1994), que aponta áreas de muita alta suscetibilidade às erosões nas partes leste e central da área, onde predominam Argissolos. A alta suscetibilidade às erosões na parte oeste está vinculada aos Latossolos. Isso porque nas porções leste e central os solos apresentam geralmente textura arenosa e relação textural abrupta, ao passo que na porção oeste predominam os de textura média.

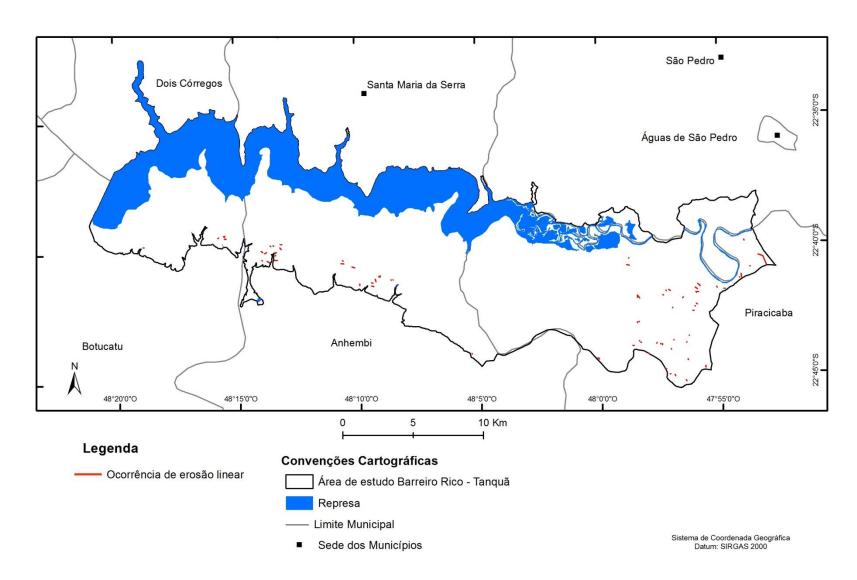


Figura 7.15. Mapa de ocorrência de erosão linear na área de estudo Barreiro Rico – Tanquã.

Na comparação entre as imagens de 2010 e 2017 é possível notar a diminuição de algumas feições erosivas na área, especialmente aquelas de menor profundidade e largura. Trata-se de correções a partir de terraceamentos e confecção de cordões de contorno, hoje ocupados com usos agrícolas. Porém, processos para a recuperação do solo são necessários, já que as feições erosivas em novos estágios de iniciação, ainda persistem e são visíveis, mesmo que de forma mais suavizada. Entretanto, a comparação entre as duas imagens, demonstra a possibilidade de tratamento dessas áreas frágeis através de manejo de conservação de solo, como desvio dos fluxos hídricos que drenam e alimentam o processo, principalmente os originários de desvio de água de estradas e carreadores, construção de terraços ou cordões de contorno e revegetação do entorno imediato e das feições erosivas, sempre que possível (Figura 7.16).

Figura 7.16. Erosões por desvio de água de estrada vicinal em Argissolo Vermelho-Amarelo.

Há ainda a possibilidade de que algumas áreas tenham se estabilizado, permitindo a instalação da vegetação, o que ameniza a feição erosiva. Contudo, tal constatação não significa que a área se recuperou. Pela interpretação das imagens não foi possível identificar a mobilização de nenhuma estratégia técnica no sentido de estancar ou reverter os processos erosivos, como aumento da cobertura vegetal do solo ou estratégias de desvio de fluxo hídrico e aumento da infiltração da água na vertente, ou ainda, controle do escoamento superficial, por exemplo.

7.3.4. Fragilidade

Na caracterização da fragilidade ambiental da área em relação aos processos erosivos, consta o estudo do Aproveitamento Múltiplo Santa Maria da Serra, realizado entre setembro de 2012 e novembro de 2013 (EIA/RIMA). Para esse estudo foram considerados os fatores declividade dominante, profundidade do perfil, textura da superfície, textura da subsuperfície, tipo de horizonte de subsuperfície ou arranjo estrutural e tipo de transição entre horizontes e/ou mudança textural. Esses fatores foram analisados de forma integrada gerando graus de suscetibilidade do solo à erosão. Dentre as unidades de solo mapeadas no estudo, cinco foram classificadas como forte e onze como muito forte, estando a maior

parte da área na zona de alta suscetibilidade, principalmente na porção Leste, nos locais em que há presença de Neossolo Litólico.

Já para o presente trabalho, Como forma de apresentar os atributos do meio físico que possam indicar fragilidades dos solos é apresentada tabela sinótica (Tabela 7.3) e mapa (Figura 7.17), explicativos para cada unidade de mapeamento de solos com informações de textura dos solos, posição no relevo, material de origem, potencialidade e restrições e o grau de suscetibilidade de acordo com esses parâmetros.

De um modo geral, é possível observar que a área apresenta alto grau de fragilidade. Nos casos de terrenos de baixa declividade, mais aplanados, a alta fragilidade está associada à possibilidade de contaminação e inundação dos solos, enquanto que nos terrenos de maior declividade, a alta fragilidade está associada à suscetibilidade aos processos erosivos, principalmente em solos com relação textural abrupta.

É possível observar que os Latossolos, de maneira geral, apresentam baixo e médio grau de fragilidade, associados a relevo suave ondulado e ondulado, enquanto que as altas fragilidades estão relacionadas com os Argissolos (Vermelhos e Vermelho-Amarelos) e Neossolos Litólicos e Quartzarênicos.

Tabela 7.3. Síntese dos elementos do meio físico, potencialidades/restrições e grau de fragilidade dos solos.

30/03.				Substrat		
Unida de de Solo	Textura do Solo	Decli ve (%)	Posiçã o no Relevo	o Rochoso, Sediment os e Cobertur a.	Potencialidades e Restrições	Grau de Fragilida de
CX2	Indiscriminad o	2-8	Ondula do	Sediment os Aluviais	Solos sujeitos a inundação e contaminação. Lençol freático pouco profundo. Suscetíveis a assoreamento, subsidência, erosão marginal e solapamento de margem.	Alta 2
LVA6	Média	0-8	Suave Ondula do	Arenitos	São solos friáveis bem drenados, relevo pouco movimentado, de baixa fertilidade e moderada capacidade de retenção de água. Possui moderado potencial de erodibilidade.	Baixa
LVA7	Argilosa ou Média	<15	Ondula do	Formação Pirambóia	São solos friáveis excessivamente a bem drenados, relevo pouco movimentado, de baixa fertilidade e, no caso dos neossolos, baixa capacidade de retenção de água. Possuem moderado potencial de erodibilidade.	Média
NV11	Argilosa a muito argilosa e arenosa/argil osa a média/argilos a	8-15	Ondula do	Basalto e diabásio	São solos com boa fertilidade natural e, consequente, predisposição ao uso agrícola. Apresentam de baixa a alta suscetibilidade aos processos erosivos devido à textura.	Média
PVA19	Arenosa/médi a	<15	Ondula do	Arenitos Formaçõe s Piramboia e Corumbat aí	Solos com moderada fertilidade natural, presença de relação textural abrupta, espessoarênicos, moderada capacidade de retenção de água e declive moderado. Muito suscetíveis à erosão.	Alta1
PVA12	Arenosa/méd ia e média	<15 e local ment e >15	Ondula do e Forte Ondula do	Arenitos Formação Piramboia	capacidade de retenção de água e declive moderado. Muito suscetíveis à erosão.	Alta1
PVA14 , PVA15	Arenosa/méd ia, média, argilosa,	8-20	Ondula do	Arenitos Formaçõe s	São solos moderadamente drenados, de baixa fertilidade, relevo com declive moderado a	Alta1

Unida de de Solo	Textura do Solo	Decli ve (%)	Posiçã o no Relevo	Substrat o Rochoso, Sediment os e Cobertur a.	Potencialidades e Restrições	Grau de Fragilida de
, PVA24	média/argilos a			Piramboia e Corumbat aí	alto. Possuem alto potencial de erodibilidade.	
RL 3, 15	Média	>15	Forte Ondula do	Arenitos Formaçõe s Piramboia e Corumbat aí	Solos rasos a pouco profundos e em relevo movimentado e baixa fertilidade natural. Baixo potencial agrícola e alta suscetibilidade a erosão/movimento de massa.	Alta 1
RQ2, RQ3	Arenosa a média grosseira	8-20	Ondula do	Arenitos Formação Pirambóia	Solos arenosos excessivamente drenados, com baixa capacidade de retenção de água e de nutrientes. Alto potencial de erodibilidade.	Alta1

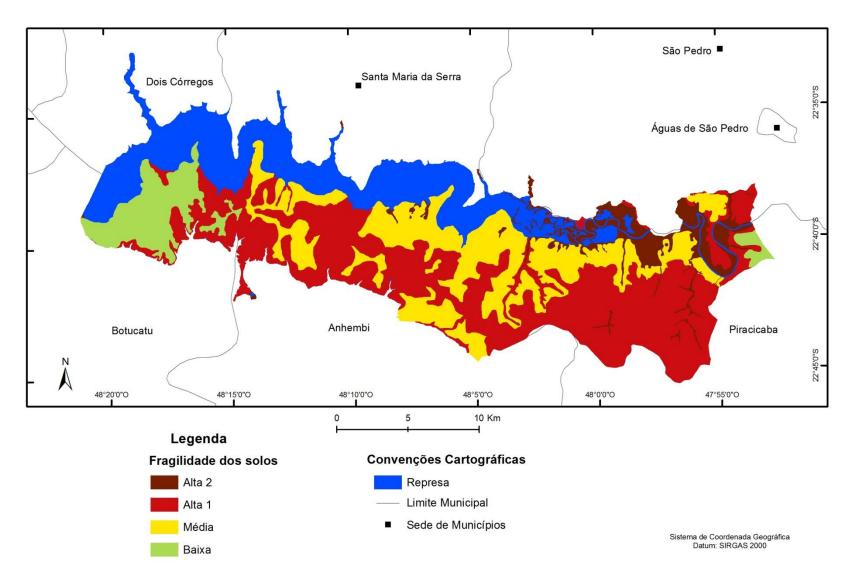


Figura 7.17. Mapa de fragilidade dos solos da área de estudo Barreiro Rico – Tanquã.

7.4. Considerações finais

Foram mapeadas 14 unidades de solos, dentre as quais 7 de unidades de mapeamento simples e 7 de unidades compostas (em associação). A área apresenta Cambissolos, Gleissolos (Háplicos e Melânicos), Latossolos Vermelho-Amarelos, Nitossolos, Argissolos Vermelho-Amarelos, Neossolos (Litólicos e Quartzarênicos) e Organossolos.

Trata-se de área com variados tipos de solo que imprimem diferentes fragilidades ao ambiente, todas atreladas a atributos pedológicos como textura, estrutura e profundidade, ou do relevo como tipo e declive.

A análise dos mapas e dados mostra que as áreas onde ocorrem as mais expressivas erosões lineares são as definidas como de alta suscetibilidade, sendo necessárias intervenções para contenção desses processos. O uso de boas práticas de manejo do solo deve ser difundido na área, buscando evitar o aumento dos processos erosivos e o assoreamento e contaminação das áreas mais baixas.

Os fragmentos florestais importantes para a preservação dos primatas, Muriqui e Bugio, encontram-se em parte de áreas com alta suscetibilidade aos processos de erosão, enquanto que no caso da preservação dos ambientes para as aves migratórias, estes se encontram definidos também como de alta suscetibilidade devido aos processos de assoreamento e contaminação.

A formalização de instrumento que resguarde a área de estudo como unidade de conservação permite a preservação, melhoria e proteção dos ambientes físicos e biológicos, bem como o estímulo ou o fomento a práticas adequadas ao uso ou conservação.

8. SOCIOECONOMIA

8.1 Introdução

Este trabalho faz parte dos estudos realizados pela Secretaria do Meio Ambiente do Estado de São Paulo para a criação de Unidade de Conservação na região da foz do rio Piracicaba, abrangendo parte dos municípios de Piracicaba, Anhembi, Botucatu, Dois Córregos, Santa Maria da Serra e São Pedro, Unidade de Conservação (UC) de Uso Sustentável nos termos da Lei Federal nº 9.985/2000. Trata-se de um levantamento básico de indicadores socioeconômicos relativos à área de estudo.

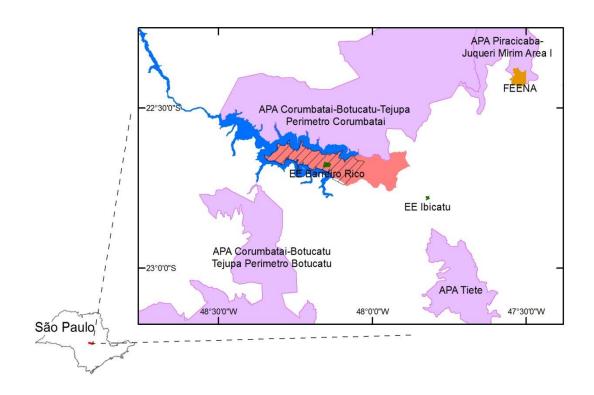


Figura 8.1. Localização da área de estudo Fonte: DATAGEO CPLA

onto: Dittiitto Eo oi Eit

8.2 Procedimentos Metodológicos

O diagnóstico foi elaborado por meio de pesquisa e análise de dados secundários, especialmente os disponibilizados no Relatório de Qualidade Ambiental, da CPLA. Analisaram-se os dados dos municípios abrangidos pela área de estudo, em sua totalidade. O refino das informações por setor censitário será objeto da próxima etapa do trabalho.

8.2.1 Caracterização socioeconômica

A área de estudo engloba municípios de duas Unidades de Gerenciamento de Recursos Hídricos (UGRHI): Piracicaba-Capivari-Jundiaí (PCJ) e Sorocaba/Médio Tietê (SMT).

A UGRHI 5 (PCJ) possui municípios que compõem a Região Metropolitana de Campinas, as Aglomerações Urbanas de Piracicaba e de Jundiaí, a Microrregião Bragantina e a Região Metropolitana de Sorocaba (somente o município de Salto). Este conjunto de arranjos é parte integrante da Macrometrópole Paulista. A bacia hidrográfica possui um parque industrial diversificado, com destaque para a produção de componentes para telecomunicações e informática, montadoras de veículos automotivos, refinaria de petróleo, fábricas de celulose e papel, indústrias alimentícias e sucroalcooleiras. A UGRHI abriga diversos Arranjos Produtivos Locais: têxtil e confecções em Americana; flores em Holambra; semijoias em Limeira; e da cadeia do etanol em Piracicaba.

A UGRHI 10 (SMT) contém a maior parte dos municípios que formam a Região Metropolitana de Sorocaba, além de municípios distribuídos na Aglomeração Urbana de Jundiaí (Cabreúva), na Região Metropolitana de São Paulo (Vargem Grande Paulista), que compõem a Macrometrópole Paulista. Ainda na bacia, o município de Botucatu é um Centro Regional.

A bacia possui grandes complexos industriais de base mineral ligados à produção de alumínio e cimento. A região apresenta centros diversificados de serviços, com destaque para as universidades localizadas em Botucatu e Sorocaba. A UGRHI abriga três Arranjos Produtivos Locais: dois arranjos voltados às cadeias produtivas de cerâmica vermelha, um em Itu e outro em Tatuí, além do Arranjo voltado ao setor de confecções infantis em Cerquilho e Tietê. Na produção agropecuária, predominam a avicultura, suinocultura e os cultivos de cítricos, pera, cebola e silvicultura. A mineração destaca-se pela extração de calcário, areia, diabásio e granito.

Tabela 8.1. Dados Demográficos dos municípios da área de estudo

Município	Área (km²)	Populaçã	Densidade	Taxa	Projeção
		0	Demográfic	Geométrica	Populaciona
			а	de	I (2040)
				Crescimento	
				Anual	
Dois	632,97	26.305	41,56	0,88	29.573
Córregos					
Anhembi	736,56	6.367	8,64	1,74	7.892
Botucatu	1482,64	137.334	92,63	1,11	151.646
Piracicaba	1378,5	382.817	277,79	0,71	400.714
Santa Maria	252,62	5.918	23,43	1,3	7.267
da Serra					
São Pedro	609,9	33.486	54,78	0,82	36.334
Estado de	248.223,2	43.674.53	175,94	0,83	47.629.261
São Paulo	1	3			

Os municípios mais populosos da área de estudo são Piracicaba, com 382.87 habitantes, e Botucatu, com 137.334. Entretanto, as áreas urbanas centrais destes municípios encontram-se fora da área de estudo.

A taxa geométrica de crescimento anual (TGCA) está ao redor de 1 por cento, sendo que o município que mais apresenta aumento na população é Anhembi, com 1,74. Piracicaba, município mais populoso, foi o que menos cresceu (0,71%).

Anhembi apresenta o maior PIB do setor agropecuário, com aproximadamente 28%.

O Índice Paulista de Responsabilidade Social (IPRS) avalia as condições de vida da população considerando variáveis que compõem indicadores sintéticos de três dimensões: riqueza (indicadores de renda familiar e riqueza municipal), longevidade (indicadores de sistema e condições de saúde) e escolaridade (indicadores de cobertura e qualidade de ensino). O resultado em cada um dos indicadores é um número entre zero e 100, que por sua vez, corresponde a um determinado nível de qualidade (baixo, médio ou alto). A Tabela 8.1 mostra o desempenho dos municípios da área de estudo, em comparação ao estado de São Paulo na última edição do IPRS (2014), calculado pela Fundação Seade.

Tabela 8.2 - indicadores sintéticos do IPRS na área de estudo em 2014

	Riqueza	Longevidade	Escolaridade
Dois Córregos	baixa	baixa	média
Anhembi	baixa	alta	baixa
Botucatu	alta	alta	média
Piracicaba	alta	alta	alta
Santa Maria da Serra	baixa	alta	baixa
São Pedro	baixa	média	alta

Fonte: Seade (2017a), elaborado por SMA/CPLA (2018).

Além dos indicadores sintéticos setoriais de riqueza, longevidade e escolaridade, o IPRS apresenta um quarto indicador, o de Grupos do IPRS. Os municípios paulistas são agrupados conforme a similaridade dos resultados apresentados gerando uma tipologia de cinco grupos que sintetizam as três dimensões (SMA/CPLA, 2016):

- Grupo 1 municípios que apresentaram níveis altos de riqueza e níveis altos e/ou médios de longevidade e escolaridade;
- Grupo 2 municípios que apresentaram níveis altos de riqueza, mas com nível baixo de longevidade e/ou de escolaridade;
- Grupo 3 municípios que apresentaram níveis baixos de riqueza e níveis altos e/ou médios de longevidade e escolaridade;
- Grupo 4 municípios que apresentaram níveis baixos de riqueza e nível baixo de longevidade ou de escolaridade;
- Grupo 5 municípios que apresentaram níveis baixos de riqueza, de longevidade e de escolaridade.

Os resultados na área de estudo são os seguintes:

Tabela 8.3. Indicadores de Grupos do IPRS

•	
Dois Córregos	Grupo 4
Anhembi	Grupo 4
Botucatu	Grupo 1
Piracicaba	Grupo 1
Santa Maria da Serra	Grupo 4
São Pedro	Grupo 3

Apesar do IPRS agregar os desempenhos social e econômico ao seu índice, ele não caracteriza um fenômeno social que precisa ser identificado e enfrentado com políticas públicas específicas, a desigualdade. As áreas de concentração de pobreza dentro de cada município podem ser analisadas com os resultados do Índice Paulista de Vulnerabilidade Social (IPVS). Elaborado pela Fundação SEADE a partir dos dados dos setores censitários do Censo Demográfico, localiza espacialmente as áreas da população residente nos municípios segundo grupos de vulnerabilidade à pobreza. Dimensões demográficas e socioeconômicas são combinadas e geram sete grupos (SMA/CPLA, 2016).

Os sete Grupos do IPVS classificam os setores censitários nas seguintes categorias:

- Grupo 1 baixíssima vulnerabilidade;
- Grupo 2 vulnerabilidade muito baixa;
- Grupo 3 vulnerabilidade baixa;
- Grupo 4 vulnerabilidade média;
- Grupo 5 vulnerabilidade alta (urbanos);
- Grupo 6 vulnerabilidade muito alta (aglomerados subnormais urbanos);
- Grupo 7 vulnerabilidade alta (rurais).

A maior parte dos setores censitários da área de estudo está classificada entre os grupos 1 a 3, ou seja, de baixíssima, muito baixa ou baixa vulnerabilidade. Apenas uma pequena porção a leste do território, à margem do rio Piracicaba, apresenta uma classificação de média vulnerabilidade.

O Produto Interno Bruto (PIB), que corresponde à soma (em valores monetários) de todos os bens e serviços finais produzidos em determinado período, é um dos indicadores utilizados na caracterização da atividade econômica de uma região. Os municípios de Piracicaba e Botucatu são os que apresentam maior Produto Interno Bruto (PIB) da região, em valores absolutos (Tabela 8.4).

Tabela 8.4. Produto Interno Bruto total e por setor de atividade econômica (2015).

Município	PIB (Em mil	Valor	Participação	Participação	Participação
	reais correntes)	Adicionado (Em	da Indústria	dos	da
		mil reais	no Valor	Serviços no	Agropecuária
		correntes)	Adicionado	Valor	no Valor
			(%)	Adicionado	Adicionado
				(%)	(%)
Dois Córregos	578.471,96	529.576,79	20,61	65,98	13,39
Anhembi	99.084,06	94.920,33	14,23	57,83	27,93
Botucatu	4.043.042,79	3.643.663,39	31,11	67,21	1,68
Piracicaba	21.644.883,95	16.913.009,41	34,54	64,73	0,74
Santa Maria	133.590,92	126.007,66	32,1	50	17,9
da Serra					
São Pedro	606.447,54	562.362,74	9,85	81	9,15
Estado de	1.939.890.056,00	1.625.992.346,00	21,93	76,45	1,62
São Paulo					

FONTE: IBGE/SEADE/CPLA 2015.

Quanto ao Turismo, os municípios da área de estudo são assim classificados (Tabela 8.5):

Tabela 8.5. Municípios, região turística, circuitos e roteiros

Município	Região Turística	Circuitos e Roteiros
Dois Córregos	Coração Paulista	Caminhos do Tietê
Anhembi	RT Pólo Cuesta	Pólo Cuesta
Botucatu		
Piracicaba	RT Serra do Itaqueri	C. CT Ciência e Tecnologia
Santa Maria	RT Serra do Itaqueri	
da Serra		
São Pedro	RT Serra do Itaqueri	Circuito Caminho do Sol

O turismo tem importância na região, devido a presença de atrativos naturais, como as áreas de cuestas basálticas, além do reservatório de Barra Bonita, onde também se desenvolvem atividades de pesca. Há também potencial de atração de atividades ecoturísticas e turismo de aventura, bem como o de caráter histórico e cultural.

O produto agrícola predominante na região é a cana de açúcar. O município de Anhembi apresentava uma área plantada de cana de 10.400 hectares, Botucatu 18.000, São Pedro 12.300, Santa Maria da Serra 4000 e Piracicaba 149504. (IBGE, Produção Agrícola Municipal 2016).

Destacam-se ainda plantações de mandioca em Piracicaba, São Pedro e Santa Maria da Serra.

Outros produtos agrícolas relevantes na região são a melancia, plantada nos municípios de Piracicaba, Anhembi e Botucatu; o milho e a soja, em Piracicaba, Botucatu e Anhembi; o sorgo, em Piracicaba; e o tomate, em Botucatu e Piracicaba.

A pecuária leiteira tem uma pequena participação no montante total, mas é uma atividade relevante para a área de estudo. Além disso são notáveis a silvicultura de eucalipto, que ocupa uma considerável área tanto na UC proposta quanto na área de entorno; e ainda a horticultura, em pequenas propriedades, mais próximas da área urbana de Piracicaba.

CONCLUSÕES

9.1 O Sistema Nacional de Unidades de Conservação - SNUC - e o enquadramento da proposta

O Sistema Nacional de Unidades e Conservação – SNUC - (BRASIL, 2000) divide as unidades de conservação em dois grupos – Proteção Integral e Uso Sustentável - e 11 categorias, conforme quadro abaixo:

Tabela 9.1 – Grupos e categorias de Unidades de Conservação da Natureza conforme o SNUC

PROTEÇÃO INTEGRAL	USO SUSTENTÁVEL
Estação Ecológica Reserva Biológica	 Área de Proteção Ambiental – APA Área de Relevante Interesse Ecológico ARIE
Parque (Nacional, Estadual, Natural Municipal)Monumento Natural	Floresta (Nacional, Estadual, Municipal)
•Refúgio de Vida Silvestre	Reserva ExtrativistaReserva de Desenvolvimento Sustentável
	Reserva de FaunaReserva Particular do PatrimônioNatural - RPPN

As categorias de unidades de conservação do SNUC dispõem de um leque de possibilidades de usos diretos e indiretos do território a partir das suas caraterísticas e do seu objetivo de conservação, entre outros critérios. No campo teórico, algumas matrizes orientadoras podem facilitar o enquadramento da área que se pretende conservar nessas categorias. Outros aspectos como o desejo das pessoas que vivem naquele território e questões fundiárias também influenciam na escolha da categoria. Abaixo estão dois exemplos de matrizes de orientação de enquadramento de territórios em categorias do SNUC.

A figura 9.1, utilizada para enquadramento das unidades de conservação do contínuo da Cantareira (Parque Estadual de Itaberaba, Parque Estadual de Itapetinga, Monumento Natural Estadual da Pedra Grande, Floresta Estadual de Guarulhos), enfoca os objetivos de conservação da área (Fundação Florestal, 2010). Já a figura 9.2, elaborada para o enquadramento do sistema faxinal do Município de Mandirituba,

PR, é um modelo que integra tanto as atividades desenvolvidas na área quanto os objetivos de gestão da unidade.

	Pr	oteç	ão Ir	ntegr	ral	Uso Sustentável								
Objetivos de Conservação da Área		#	N.	Σ	RVS	APA	ARIE	Æ	RE	RF	RDS	RPPN		
I. Manutenção da diversidade biológica	1	1	1	2	1	2	1	2	2	2	1	1		
 Conservação dos recursos genéticos 	1	1	1	2	1	3	2	3	2	2	2	1		
 Preservação/restauração de ecossistemas 	1	1	1	3	2	2	3	3	3	3	2	1		
 Proteção de espécies raras/ endêmicas /vulneráveis 	1	1	1		1	3	3	3	3	3	3	1		
5. Manejo de recursos da fauna/flora	3	3	3	3	3	2	3	1	1	1	1	3		
 Proteção de paisagens/belezas cênicas 			1	1	3	2	3	-	-			1		
7. Proteção de sítios abióticos	3	3	3	1	3	3	3	-	-		3	3		
Conservação de bacias hidrográficas	2	2	2	3	3	1	3	3	3	3	3	3		
9. Incentivo à pesquisa científica	1	1	1	1	1	2	3	\mathbf{I}	3	${\bf T}_{i}$	3	1		
10. Promoção de atividades de educação ambiental	3	3	1	1	3	2	2	3	3	3	3	1		
11. Promoção de atividades de recreação e serviços de turismo		-	1	1	2	2	3	3	-	3	2	1		
12. Controle de erosão e sedimentação	3	3	3	3	3	2	3	3	3	3	3	3		
 Proteção de sítios culturais, arqueológicos e históricos 			2	2		3					3	3		
14. Incentivo ao uso sustentável dos recursos naturais		-			-	1	1	1	1	1	1	-		
15. Manutenção de moradia e subsistência de com. tradicionais						2			2		2	-		
16. Produção de proteína animal		-			-	-	-	-	-	1		-		
17. Produção de recursos madeireiros					-			1				-		
18. Produção de produtos extrativistas					-	-	-	3	1	3	1	-		
19. Manutenção da flexibilidade de manejo/uso múltiplo dos rec.naturais		-			-	1	-	1	1	1	1	-		
20. Estímulo ao desenvolvimento regional		-	2	2	3	1	3	1	1	1	1	3		

Adaptado de IUCN (2004); Milano (2000); De Faria (2004).
Siglas: RB – Reserva Biológica; EE – Estação Ecológica; PN – Parque Nacional; MN – Monumento Natural; RVS – Refúgio da Vida Selvagem; APA – Área de Proteção Ambiental; ARIE – Área de Relevante Interesse Ecológico; FN – Floresta Nacional; RE – Reserva Extrativista; RF – Reserva de Fauna; RDS – Reserva de Desenvolvimento Sustentável; RPPN – Reserva Particular do Patrimônio Natural.

Figura 9.1 - Matriz com os objetivos de conservação relacionados à criação e manejo das categorias e unidade de conservação brasileiras. 1- Objetivo primário; 2- Objetivo Secundário; 3- Objetivo potencial ou complementar

		Modalidades de unidades de conservação												
		Proteção integral					Uso sustentável							
	Características específicas	RB	EE	PN	MN	RVS	APA	ARIE	FN	RE	RF	RDS	RPPN	S. faxinal
	Moradia de comunidades tradicionais	0	0	0	0	0	1	0	1	1	0	1	0	1
	Produção animal	0	0	0	0	0	1	1	1	1	0	1	0	1
	Produção de recursos madeireiros	0	0	0	0	0	1	1	1	1	0	1	0	1
S	Produção de produtos extrativistas	0	0	0	0	0	1	1	1	1	0	1	0	1
ATIVIDADES	Produção agrícola	0	0	0	0	0	1	1	1	1	0	1	0	1
M	Manejo/uso múltiplo dos recursos naturais	0	0	0	0	0	1	1	1	1	1	1	1	1
II	Manejo indireto dos recursos naturais	0	0	1	1	1	1	1	1	1	1	1	1	1
A	Pesquisa científica	1	1	1	1	1	1	1	1	1	1	1	1	1
	Atividades de recreação e serviços de turismo	0	0	1	1	1	1	1	1	1	1	1	1	1P
	Atividades de educação ambiental	1	1	1	1	1	1	1	1	1	1	1	1	1P
	Manejo de recursos da fauna/flora	1	1	1	1	1	1	1	1	1	1	1	1	1
	Proteção de sítios culturais e arqueológicos	0	0	1	1	0	1	0	0	0	0	1	1	1
, o	Preservação/restauração de ecossistemas	1	1	1	1	1	1	1	1	1	1	1	1	1
TIVOS	Proteção de espécies raras/endêmicas/vulneráveis	1	1	1	0	1	1	1	1	1	1	1	1	1
ETI	Uso sustentável dos recursos naturais	0	0	0	0	0	1	1	1	1	1	1	0	1
OBJE	Proteção de paisagens/belezas cênicas	0	0	1	1	1	1	1	0	0	0	0	1	1
	Proteção de sítios abióticos	1	1	1	1	1	1	1	0	0	0	1	1	1
	Conservação de bacias hidrográficas	1	1	1	1	1	1	1	1	1	1	1	1	1

Legenda: RB – Reserva Biológica; EE – Estação Ecológica; PN – Parque Nacional; MN – Monumento Natural; RVS – Refúgio da Vida Selvagem; APA – Área de Proteção Ambiental; ARIE – Área de Relevante Interesse Ecológico; FN – Floresta Nacional; RE – Reserva Extrativista; RF – Reserva de Fauna; RDS – Reserva de Desenvolvimento Sustentável; RPPN – Reserva Particular do Patrimônio Natural.

Figura 9.2 – Matriz de enquadramento nas categorias do SNUC elaborado para o sistema faxinal Mandirituba, PR

Examinando as características do território diagnosticado pelo presente relatório técnico, que integra zonas ambientalmente bastante expressivas com áreas de uso marcadamente antrópico, com destaque para os cultivos agrícolas, pesca e mineração, a categoria de unidade e conservação mais vocacionada ao polígono de estudo é a Área de Proteção Ambiental – APA.

Segundo o SNUC a "Área de Proteção Ambiental – APA é uma área em geral extensa, com um certo grau de ocupação humana, dotada de atributos abiótico, bióticos, estéticos e culturais, especialmente importantes para a qualidade de vida e o bemestar das populações humanas, e tem como objetivos básicos proteger a diversidade biológica, disciplinar o processo de ocupação e assegurar a sustentabilidade do uso dos recursos naturais (Artigo 15)"

Para o caso em tela, entre outras características desejáveis, as Áreas de Proteção Ambiental:

- Convivem com atividades produtivas (agricultura, atividades urbanas, mineração).
- Auxiliam no ordenamento do solo de regiões com usos múltiplos da terra, potencialmente integrando interesses diversos no território.
- Não exigem desapropriação.

9.2 A divisão do território para a sua gestão mais adequada

Escolhida a melhor categoria aplicável à área de estudos, optou-se por criar duas unidades de conservação nesse polígono, segundo suas características e especificidades de gestão:

Área de Proteção Ambiental Barreiro Rico (30.142,63 hectares): área terrestre, caracterizada pela presença de fragmentos florestais de Floresta Estacional Semidecidual e por cultivos agrícolas.

Área de Proteção Ambiental Tanquã-Rio Piracicaba (14.057,30 hectares): áreas úmidas correspondentes ao leito do rio Piracicaba e suas várzeas, à planície de inundação do Tanquã, reservatórios, e áreas cultivadas no entorno imediato do rio.

A proposta com a criação de duas unidades de conservação é possibilitar melhor foco de gestão, com ações mais eficazes no que se refere à fiscalização, prevenção e combate a incêndios florestais e implementação de programas/projetos específicos de desenvolvimento sustentável que se tenham como objetivo mediar as atividades socioeconômicas dos territórios com a comprovadas necessidades de conservação ambiental dos ambientes terrestres e áreas úmidas.

Abaixo seguem imagens das duas unidades de conservação destacando sua inserção municipal e as unidades de conservação adjacentes:

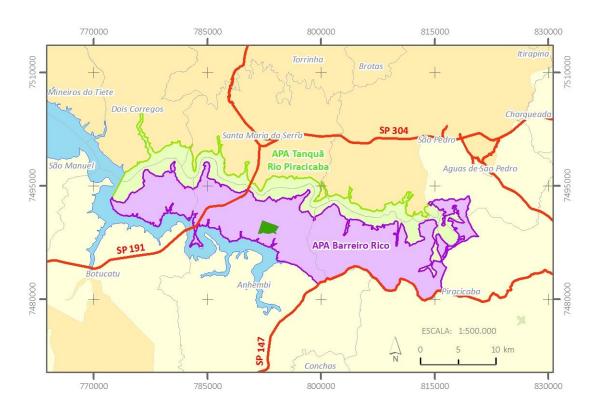


Figura 9.3 – Limites das APAs Tanquã-Rio Piracicaba e Barreiro rico, destacando sua inserção municipal

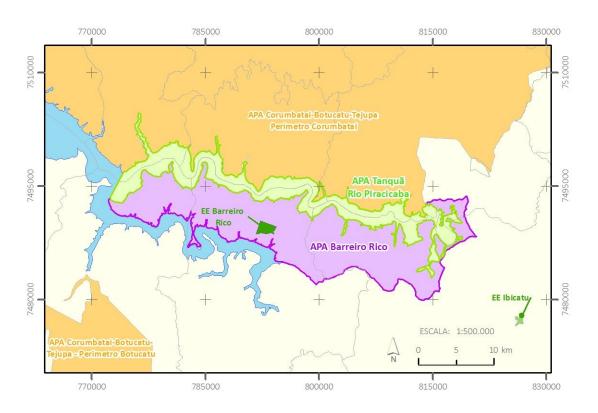


Figura 9.4 – Limites das APAs Tanquã-Rio Piracicaba e Barreiro Rico, destacando as unidades de conservação adjacentes e interna.

As tabelas a seguir apresentam números da porção que as unidades ocupam de cada município e do quanto cada município está abrangido pelas unidades:

TABELA 9.1 – Porcentagem de cada município abarcada pela APA Tanquã-Rio Piracicaba

Município	Área total do Município (ha)	Área da APA (ha)	%
Anhembi	73810,60	2280,42	3,09
Botucatu	148301,09	1903,99	1,28
Dois Córregos	63361,91	1576,08	2,49
Piracicaba	138131,37	2882,95	2,09
Santa Maria da Serra	25321,16	2928,40	11,57
São Pedro	61294,09	2485,46	4,05
Total		14.057,30	

TABELA 9.2 – Porcentagem de cada município abarcada pela APA Barreiro Rico

APA Barreiro Rico

Município	Área total do Município (ha)	Área da APA (ha)	%
Anhembi	73810,60	11260,89	15,26
Botucatu	148301,09	4680,56	3,16
Piracicaba	138131,37	13348,46	9,66
São Pedro	61294,09	852,72	1,39
Total		30.142,63	

TABELA 9.3 – Área da APA Tanquã-Rio Piracicaba distribuída pelos municípios

APA Tanquã - Rio Piracicaba

Município	Área da APA (ha)	%
Anhembi	2280,42	16,22
Botucatu	1903,99	13,54
Dois Córregos	1576,08	11,21
Piracicaba	2882,95	20,51
Santa Maria da Serra	2928,40	20,83
São Pedro	2485,46	17,68
Total	14.057,30	100,00

TABELA 9.4 – Área da APA Barreiro Rico distribuída percentualmente pelos municípios

APA Barreiro Rico

Município	Área da APA (ha)	%
Anhembi	11260,89	37,36
Botucatu	4680,56	15,53
Piracicaba	13348,46	44,28
São Pedro	852,72	2,83
Total	30.142,63	100,00

Os **ANEXOS I e II** destacam as duas unidades de conservação em maior detalhe, sobre Ortofotos, onde se observam alguns usos da terra daquela região.

9.3 Diretrizes iniciais de gestão

A lei do SNUC determina que, no prazo de cinco anos a partir da data da criação de uma unidade de conservação, seja elaborado o seu Plano de Manejo, que estabelecerá suas zonas, normas e programas de gestão.

O Plano de Manejo possibilita o adequado diagnóstico do território e o estabelecimento de um processo de consultas, diálogos e construção de pactos entre a instituição gestora da unidade e os seus parceiros e setores interessados de forma a que os regramentos da UC sejam construídos com a melhor técnica e da forma mais consensual possível.

Sem perder de vista a elaboração desse planejamento futuro, a Secretaria do Meio Ambiente e a Fundação Florestal se propuseram a alinhar algumas diretrizes iniciais de gestão que pudessem sinalizar aos usuários, gestores e operadores desse território aspectos básicos da forma como essas unidades de conservação foram concebidas.

As diretrizes para a APA Tanquã-Rio Piracicaba foram elaboradas para a unidade como um todo, ao passo que a APA Barreiro Rico foi dividida em duas áreas: Área 1-ASPE Barreiro Rico e Área 2- Bacia de Contribuição do Tanquã e Rio Piracicaba.

O ANEXO III ilustra essa setorização territorial.

9.3.1. Diretrizes Gerais para as APAs Bareiro Rico e Tanquã-Rio Piracicaba

Conceito das Unidades de Conservação: território para a gestão sustentável integrada da biodiversidade, dos recursos hídricos e demais serviços ecossistêmicos de uma região do interior paulista com atributos naturais de alta relevância para o estado. O objetivo é estabelecer na APA um pacto com municípios, proprietários, Sistema Ambiental Paulista e outros atores da região para a conservação ambiental dos remanescentes de vegetação e sua fauna associada, com destaque aos primatas do Barreiro Rico e à avifauna do Tanquã, buscando-se, complementarmente, a adoção das boas práticas na produção rural e outras atividades econômicas da região.

Ganhos a Partir da Criação das Unidades de Conservação:

- Aumento da arrecadação de ICMS por parte dos municípios (ICMS Ecológico)
- Criação de Conselhos Consultivos, envolvendo prefeituras, setores produtivos e sociedade, para as definições conjuntas da gestão das unidades.
- Canalização de políticas públicas federais ou estaduais para o território (pagamentos por serviços ambientais, restauração ecológica, ampliação da Estação Ecológica do Barreiro Rico por meio de compensação de Reserva Legal, entre outras).
- Possibilidades de investimentos na região por meio de recursos de Compensação Ambiental.
- Atuação do Programa Corta-Fogo.

9.3.2. Diretrizes para a APA Tanquã-Rio Piracicaba

Objetivo específico: conservação da avifauna residente e migratória e biodiversidade aquática.

Diretriz para a APA: Conservação do habitat do Tanquã e demais áreas do rio Piracicaba, a partir da manutenção do padrão de fluxo das águas do rio Piracicaba e da busca da permanente melhoria da qualidade de suas águas, diminuição de impactos ambientais, entre outras ações, em harmonia com atividades econômicas presentes na área.

Restrições para a Área:

As já incidentes pela legislação ambiental.

Ações previstas para a Área:

- Aquisição de embarcações e intensificação da fiscalização ambiental na área.
- Fortalecimento do turismo de observação de aves, lazer náutico e novos modelos de negócios.

9.3.3. Diretrizes para a APA Barreiro Rico

ÁREA 1 – ASPE Barreiro Rico (área delimitada pela Resolução SMA nº 36, de 26 de maio de 2015, corresponde à península do Barreiro Rico):

Objetivo específico: conservação dos expressivos fragmentos de floresta estacional semidecidual, compostos em grande parte por florestas maduras, e sua fauna associada, com destaque aos cinco primatas da região (muriqui-do-sul, sagui-da-serra-escuro, sauá, bugio-ruivo e macaco-prego) e à sua abundante avifauna.

Diretriz para a Área: contribuir para a conciliação da produção agrícola com a conservação dos fragmentos florestais, melhorar as condições de proteção da vegetação e incrementar a conectividade ecológica da paisagem, especialmente com relação aos primatas.

Restrições para a Área:

- As já incidentes pela legislação ambiental, com destaque à Lei Florestal, Lei do Cerrado, Lei da Mata Atlântica e as de uso de agrotóxicos.
- Outras, a serem pactuadas por ocasião do Plano de Manejo, relativas à adoção de regras de proteção/conservação dos remanescentes florestais.
 Exemplo:
 - Obrigatoriedade de compensação de supressão de árvores isoladas no entorno dos fragmentos.
 - Adoção consensuada de boas práticas agrícolas como a eliminação gradativa do emprego do fogo

Ações previstas para a Área:

- Contratação de serviços técnicos especializados para estabelecimento de estratégias de conservação dos primatas (em curso).
- Intensificação dos esforços de prevenção e combate de incêndios florestais, inserindo a área na Operação Corta-Fogo (em curso).
- Incentivar o manejo de espécies exóticas invasoras, especialmente a brachiaria e o capim colonião nas áreas de borda, substituindo por nativas, sempre que possível.

- Promover ações educativas e o ecoturismo voltados à observação da fauna.
- Intensificação de ações em conjunto com a Polícia Ambiental.

ÁREA 2 – Bacia de Contribuição do Tanquã e Rio Piracicaba

Objetivo específico: conservação dos fragmentos de vegetação da região e sua fauna associada e contribuição com a qualidade das águas do Tanquã e do rio Piracicaba.

Diretriz para a Área: contribuir para a conciliação da produção agrícola com a conservação dos fragmentos florestais, estimular as boas práticas de conservação do solo e utilização de insumos agrícolas e outras que resultem em redução de impactos sobre o Tanquã e o rio Piracicaba.

Restrições para a Área:

- As já incidentes pela legislação ambiental, com destaque à Lei Florestal, Lei do Cerrado, Lei da Mata Atlântica e as de uso de agrotóxicos.
- Outras, a serem pactuadas por ocasião do Plano de Manejo, relativas à adoção de regras de proteção/conservação dos remanescentes florestais.
 Exemplo:
 - Obrigatoriedade de compensação de supressão de árvores isoladas no entorno dos fragmentos.
 - Adoção consensuada de boas práticas agrícolas como a eliminação gradativa do emprego do fogo

Ações previstas para a Área:

- Promoção de cursos na área de boas práticas agrícolas.
- Apoio técnico e institucional para a restauração e aumento da conectividade ecológica, com ênfase nas áreas de nascentes e cursos d'água.

9.4 - Recebimento de ICMS Ecológico por parte dos municípios envolvidos

O ICMS (Imposto sobre Operações Relativas à Circulação de Mercadorias e sobre Prestações de Serviços de Transporte Interestadual e Intermunicipal e de Comunicação) é um imposto previsto na Constituição Federal que, arrecadado pelos estados e pelo Distrito Federal, tem 25% do total da arrecadação repassados aos municípios. Cada estado define a alíquota de ICMS incidente nos produtos e serviços e quais os critérios para o cálculo do Índice de Participação dos Municípios (IPM) a ser aplicado no produto da arrecadação do ICMS.

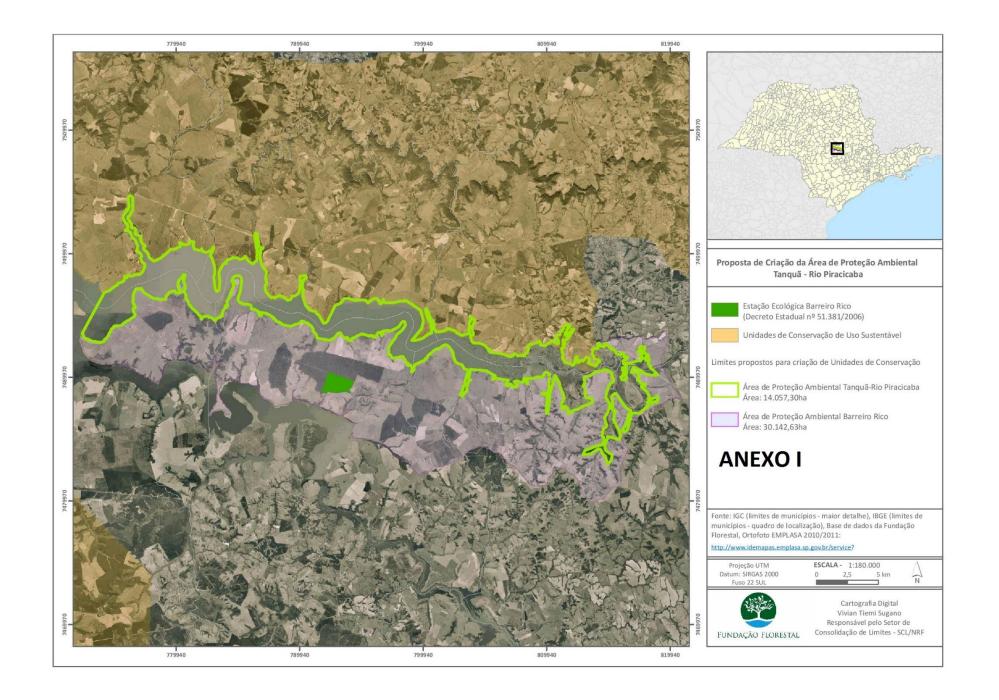
No estado de São Paulo, a matéria foi tratada inicialmente na Lei Estadual nº 3.201/1981. Posteriormente, a Lei nº 8.510/1993 introduziu as áreas protegidas como critério para repasse da quota municipal do ICMS. Esse critério ambiental é chamado ICMS Ecológico, e é calculado em função da existência de espaços territoriais especialmente protegidos nos municípios paulistas (SMA, 2018). Do total de recursos repassados aos municípios, 0,5% é equivalente à presença dessas áreas protegidas estaduais nos territórios municipais.

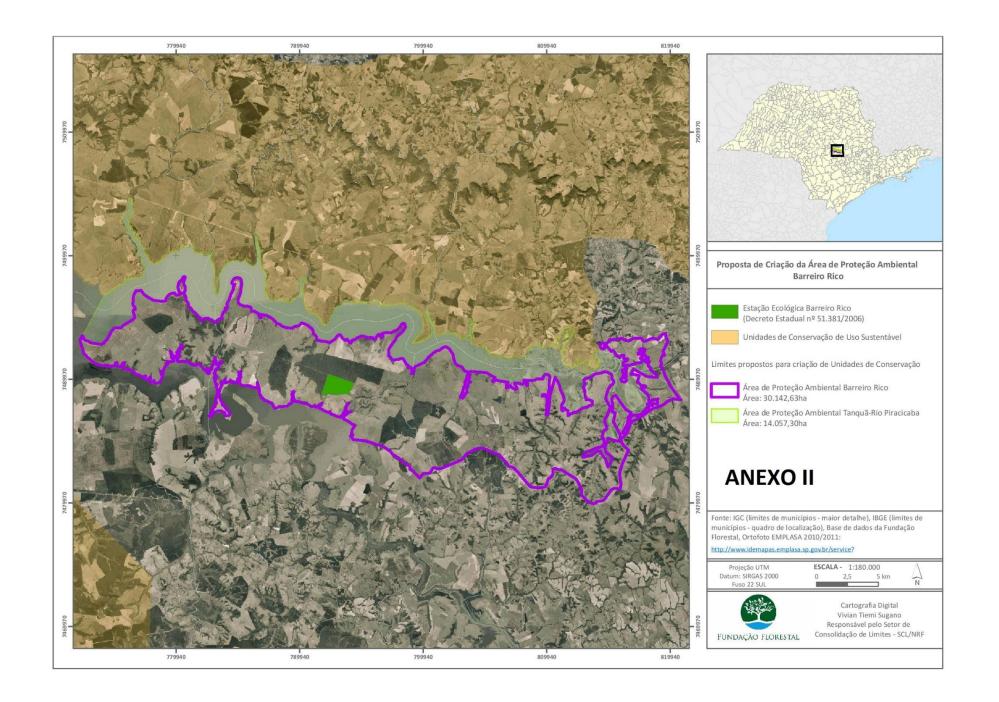
Embora não seja possível calcular com 100% de exatidão quanto um município vai receber no futuro por abrigar determinada unidade de conservação, por serem muitas as variáveis que interferem nesse cálculo, a Coordenadoria de Planejamento Ambiental da Secretaria do Meio Ambiente elaborou uma simulação, apresentada na tabela na sequência.

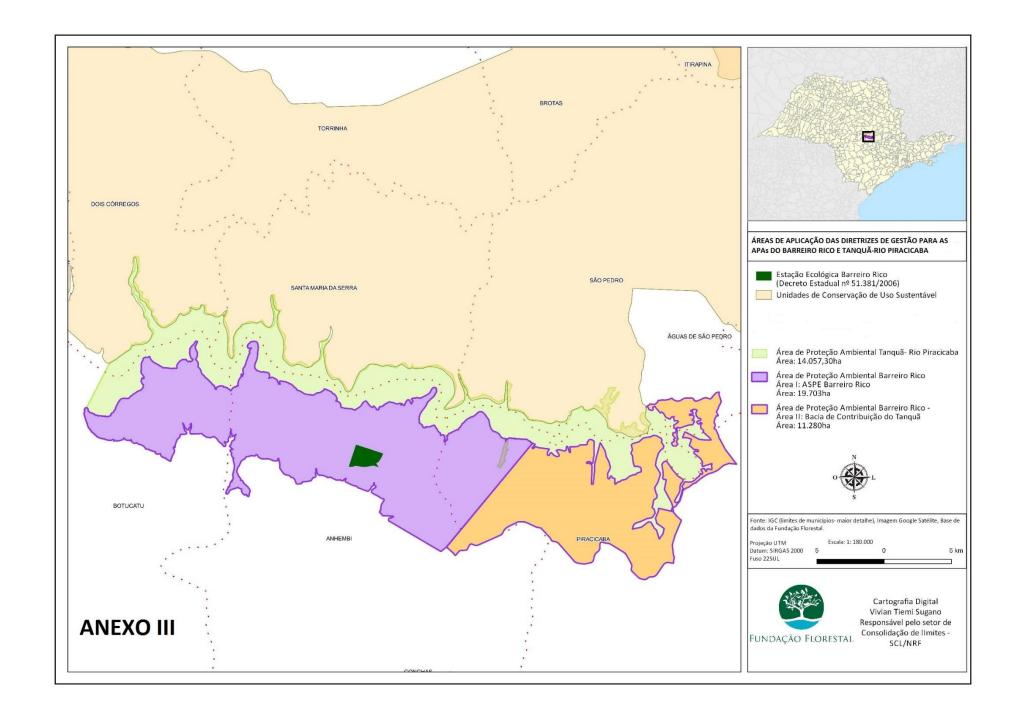
Tabela 9.5 – Simulação do acréscimo do repasse do ICMS (ICMS Ecológico) que os municípios receberão a partir da criação das APAs.

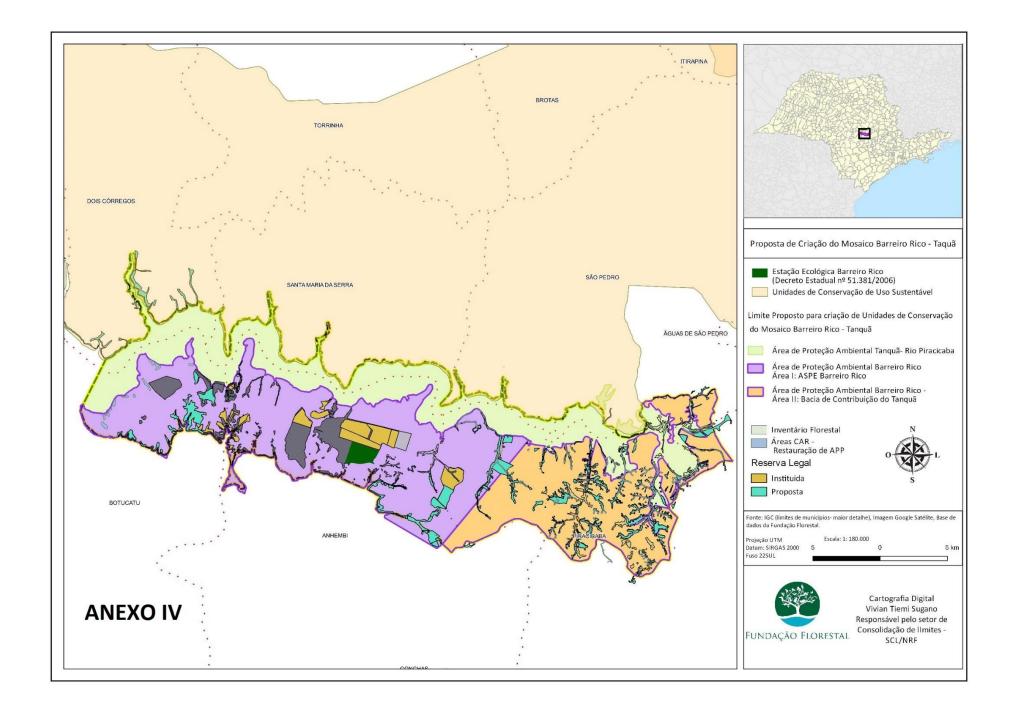
	Sema	a nova UC (ano base 201	5)
Municípios	Área protegida incidente no município (ha) ¹	Área protegida ponderada	Valor de ICMS estimado recebido em 2017 (R\$)
Anhembi	292,82	292,82	67.032,68
Botucatu	39.566,18	3.956,62	444.525,70
Dois Córregos	25.508,40	2.550,84	334.719,07
Piracicaba	76,40	76,40	210.273,56
Santa Maria da Serra	22.641,38	2.264,14	362.207,87
São Pedro	43.707,91	4.370,79	514.464,01
	Simulação com a nova UC (ano base 2015)		
Municípios	Nova área protegida incidente no município (ha) ¹	Nova área protegida ponderada	Valor de ICMS estimado simulado (R\$)
Anhembi	13.680,30	1.631,57	192.596,04
Botucatu	46.227,15	4.622,72	498.394,75
Dois Córregos	27.061,46	2.706,15	348.952,94
Piracicaba	16.272,55	1.696,02	345.616,00
Santa Maria da Serra	25.495,32	2.549,53	400.040,36
São Pedro	46.649,32	4.664,93	541.836,48

¹ Do valor, já foram excluídas as sobreposições entre as UCs.


Observação 1: O índice de áreas protegidas adotado para o repasse de ICMS em 2017 foi apurado com base nas informações sobre as áreas protegidas e na atividade econômica dos municípios em 2015 (exceto valor adicionado, cujo ano base é 2014). Para a simulação, adotamos a mesma lógica, apenas incluindo a nova UC.


Observação 2: A criação de uma nova UC implica alteração nos valores repassados a todos os municípios. Assim, todos aqueles que não fazem parte do UC tiveram seus valores reduzidos em algum grau.


9.5. Reservas Legais e Áreas de Preservação Permanente conforme Cadastro Ambiental Rural do estado de São Paulo


As Reservas Legais instituídas e propostas, juntamente com as Áreas de Preservação Permanente a serem recuperadas estão destacadas no **ANEXO IV**.

Por esse mapa, é possível verificar a ampla convergência entre as necessidades de proteção dos atributos das APAs e as perspectivas futuras de conservação desses atributos conforme indicado pelos proprietários da região no Cadastro Ambiental Rural, demonstrando amplas possibilidades futuras de trabalhos conjuntos pela preservação dos fragmentos de vegetação desse território.

10. REFERÊNCIAS BIBLIOGRÁFICAS

INTRODUÇÃO

- BRASIL. Lei nº 9.985, de 18 de julho de 2000. (2000). Regulamenta o art. 225, § 10, incisos I, II, III e VII da Constituição Federal, institui o Sistema Nacional de Unidades de Conservação da Natureza e dá outras providências. Acessado em 30/7/2018 de http://www.planalto.gov.br/ccivil-03/Leis/L9985.htm
- Instituto Florestal: Manifestação Técnica 013/2004, Processo SMA nº 13.609/03
- MINISTÉRIO DO MEIO AMBIENTE. Portaria Nº 469, de 13 de Dezembro de 2017. (2017). Dispõe sobre as ações e áreas prioritárias para a conservação de espécies de primatas brasileiros criticamente ameaçados e em perigo de extinção. Acessado em 27/7/2018 de http://www.lex.com.br/legis 27585346 PORTARIA N 469 DE 13 DE DEZEMBRO DE 2 017.aspx
- SÃO PAULO. Decreto nº 60.302, de 27 de março de 2014. (2014). Institui o Sistema de Informação e Gestão de Áreas Protegidas e de Interesse Ambiental do Estado de São Paulo SIGAP e dá providências correlatas. Acessado em 30/7/2018 de https://www.al.sp.gov.br/repositorio/legislacao/decreto/2014/decreto-60302-27.03.2014.html
- SÃO PAULO. Decreto nº 60.519, de 5 de junho de 2014. (2014). Declara o mico-leão-preto (Leon to pithecus chrysopygus) como Patrimônio Ambiental do Estado, cria a Comissão Permanente de Proteção dos Primatas Paulistas Pró-Primatas Paulistas e dá providências correlatas. Acessado em 27/7/2018 de http://www.legislacao.sp.gov.br/legislacao/dg280202.nsf/5fb5269ed17b47ab83256cfb00 501469/7311cf63cf64118183257d010050e22d?OpenDocument
- SÃO PAULO (Estado). (2010). Secretaria do Meio Ambiente. Inventário Florestal da Vegetação Natural do Estado de São Paulo (2008-2009), São Paulo: SMA/Instituto Florestal.
- Victor, M. A. M. et al. (2005) **Cem anos de devastação: revisitada 30 anos depois**/Ministério do Meio Ambiente. Secretaria de Biodiversidade e Florestas. Brasília: Ministério do Meio Ambiente, 72 p, 23 cm.

USO E OCUPAÇÃO DA TERRA

- ANDERSON, R. A et al. (1979) **Sistema de classificação do uso da terra e do revestimento do solo para utilização com dados de sensores remotos**. Tradução de H. Strang. Rio de Janeiro: IBGE, 78 p.
- ANTUNES, A. Z. e WILLIS, E. O. (2003). Novos Registros de Aves para a Fazenda Barreiro Rico, Anhembi-São Paulo. **Ararajuba Revista Brasileira de Ornitologia**. 11 (1):101-102, junho de 2003.
- FLORENZANO, T. G. (2007). **Imagens de satélite para estudos ambientais**. São Paulo: Oficina de Textos, 97 p.

- INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA IBGE. (2013). Manual técnico de uso da terra. Rio de Janeiro, 2013. 171 p. (Série Manuais Técnicos de Geociências n.7) Disponível em: <ftp://geoftp.ibge.gov.br/documentos/recursos_naturais/manuais_tecnicos/manual _uso_da_terra.pdf>. Acesso em: 23 de março de 2014.
- INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA IBGE. (1991). **Manual técnico da vegetação brasileira**, Rio de Janeiro.
- SECRETARIA DO MEIO AMBIENTE / INSTITUTO FLORESTAL. (2009). Inventário Florestal da vegetação natural do Estado de São Paulo, São Paulo.
- JENSEN, J. R. (2009). **Sensoriamento remoto do ambiente: Uma perspectiva em recursos terrestres**. Tradução de J. C. N. Epiphanio. São José dos Campos: Parênteses, 598 p.
- ROBINSON, V. (2017). **Riqueza, Diversidade funcional e Sazonalidade de aves em uma planície de inundação artificial**. 55 f. Dissertação (Mestrado em Ciências Biológicas) Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" para obtenção do título de Mestre (Zoologia), Rio Claro.
- SANTOS, R.F. dos. (2004). **Planejamento ambiental:** teoria e prática. São Paulo: Oficina de Textos, 184 p.
- SECRETARIA DO MEIO AMBIENTE (Coordenadoria de Planejamento Ambiental) e INSTITUTO GEOLÓGICO. (SMA e IG). (2013). **Mapeamento do Uso e Cobertura do Solo da UGRHI 5 (PCJ)** Escala 1:25.000 Coordenadoria de Planejamento Ambiental, Instituto Geológico, 2013.

VEGETAÇÃO

- ALVES, D.M.G. (2013). Estação Ecológica do Ibicatu: a floresta do município de Piracicaba. **Revista IHGP**, v. 20, p. 224-245.
- ANGIOSPERM PHYLOGENY GROUP APG. (2016). An update of the Angiosperm Phylogeny Group Classification for the orders and families of flowering plants: APG IV. **Botanical Journal of the Linnean Society**, n. 181, p. 1–20, 2016.
- ASSUMPÇÃO, C.T.; LEITÃO FILHO, H.F.; CESAR, O. Descrição das matas da Fazenda Barreiro
- RICO, ESTADO DE SÃO PAULO. (1982). **Revista Brasileira de Botânica**, v. 5, n. 1/2, p. 53-66, 1982.
- BATAGHIN, F.A.; PIRES, J.S.R.; BARROS, F.; MULLER, A. (2017). Epífitas vasculares da Estação Ecológica de Barreiro Rico, Anhembi-SP. **Hoehnea**, v. 44, n. 2, p. 172-183, 2017.
- BRASIL. (2014). Portaria MMA n.º 443, de 17 de dezembro de 2014. Lista Nacional Oficial de Espécies da Flora Ameaçada de Extinção. Disponível em: < http://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=18/12/2014&jornal=1&pagina=110&totalArquivos=144. Acesso em: 30 jun. 2018.

- CESAR, O.; LEITÃO FILHO, H.F. (1990a). Estudo fitossociológico de mata mesófila semidecídua na Fazenda Barreiro Rico, município de Anhembi, SP. **Revista Brasil. Biol.**, v. 50, n. 1, p. 443–452.
- CESAR, O.; LEITÃO FILHO, H.F. (1999b). Estudo florístico quantitativo de Mata Mesófila Semidecídua na Fazenda Barreiro Rico, município de Anhembi, SP. **Revista Brasil. Biol.**, v. 50, n. 1, p. 133-147.
- CORREA, L.S.; SCATIGNA, A.V.; GISSI, D.S.; SILVA, D.M.; COTA, M.M.T.; SOUZA, V.C.; TAMASHIRO, J.Y.; IVANAUSKAS, N.M.; RODRIGUES, R.R. Vascular flora checklist of Ibicatu Ecological Station, Piracicaba, SP, Brasil. **Revista do Instituto Florestal**, v. 30, n. 1, 2018. [No prelo]
- COSTA, L. G. S.; MANTOVANI, W. (1995). Flora arbustivo-arbórea de trecho de mata mesófila semidecídua, no sítio ecológico de Ibicatu, Piracicaba (SP). **Hoehnea**, v. 22, n. ½, p. 47-59.
- CUSTODIO FILHO, A.; FRANCO, G.A.D.C.; NEGREIROS, O.C.; MARIANO, G.; GIANNOTTI, E.; DIAS, A.C. (1994). Composição florística de vegetação arbórea da Floresta Mesófila Semidecídua da Estação Ecológica de Ibicatu, Piracicaba, SP. **Revista do Instituto Florestal**, v. 6, p. 99-11.
- Flora do Brasil 2020 em construção. Jardim Botânico do Rio de Janeiro. Disponível em: http://floradobrasil.jbrj.gov.br/>. Acesso em: Jun. 2018.
- International Union for Conservation of Nature and Natural Resources IUCN. The IUCN Red List of Threatened Species. Disponível em: http://www.iucnredlist.org/. Acesso em: Jun. 2018
- Instituto Brasileiro de Geografia e Estatística IBGE. **Manual técnico da vegetação brasileira**. Rio de Janeiro: IBGE, 2012. 123 p.
- Kageyama, P.Y.; Gandara, F.B.; Oliveira, R.E. Biodiversidade e restauração florestal. In: Kageyama, P.Y. et al. (Coord.) **Restauração ecológica de ecossistemas naturais**. Botucatu: FEPAF, 2003. 340p.
- Martinelli, G.; Moraes, M.A. **Livro vermelho da flora do Brasil**. Rio de Janeiro: Andrea Jakobsson: Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, 2013 1110 p.
- Millenium Ecosystem Assesment. **Ecosystems and Human Well-being: Biodiversity Synthesis**. Washington, World Resources Institute. Disponível em: http://www.maweb.org/documents/document.354.aspx.pdf. Acesso em: 15/09/2010.
- Ribeiro, M.C.; Metzger, J.P.; Martensen, A.C.; Ponzoni, F.; Hirota, M.M. Brazilian Atlantic forest: how much is left and how is the remaining forest distributed? Implications for conservation. **Biological Conservation**, v. 142, p. 1141–1153, 2009.
- São Paulo. Resolução SMA nº 057, de 5 de junho de 2016. **Publica a segunda revisão da lista oficial das espécies da flora ameaçadas de extinção no Estado de São Paulo**. Disponível em: http://www2.ambiente.sp.gov.br/legislacao/resolucoes-sma/resolucao-sma-57-2016/ Acesso em: 30 jun. 2018.

- São Paulo. Secretaria do Meio Ambiente. Coordenadoria de Planejamento Ambiental. Instituto Geológico. Mapeamento do Uso e Cobertura do Solo da UGRHI 5 (PCJ) – Escala 1:25.000. São Paulo: Coordenadoria de Planejamento Ambiental, Instituto Geológico, 2013.
- São Paulo. Secretaria do Meio Ambiente. Instituto Florestal. **Inventário Florestal da vegetação natural do Estado de São Paulo**. São Paulo: Instituto Florestal, 2009.
- Terborgh, J.; Van Schaik, C. V. Por que o mundo necessita de parques. In: Terborgh, J.:
- Van Schaik, C. V.; Davenport, L.; Rao, M. (Orgs.) **Tornando os parques eficientes estratégias para a conservação da natureza nos trópicos**. Curitiba: Editora da UFPR e Fundação O Boticário, p. 25-36. 518 p.

FAUNA

- Agostinho, A. A. et al. 1999. Patterns of colonization in Neotropical reservoirs and prognoses on aging. p. 227-265. In: J. G. Tundisi e M. Straskraba. (Eds.) Theoretical Reservoir Ecology and its Applications. Leiden: Backhuys Publishers. 585 p.
- AGROFIT. 2018. banco de informações sobre os produtos agroquímicos e afins registrados no Ministério da Agricultura. Disponível em: http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-agricolas/agrotoxicos/agrofit. Acesso em: 08 Jun. 2018.
- Antunes, A. Z. 2005. Alterações na composição da comunidade de aves ao longo do tempo em um fragmento florestal do sudeste do Brasil. Ararajuba 13(1): 47-61.
- Antunes, A. Z.; Willis, E. O. 2003. Novos registros de Aves para a fazenda Barreiro Rico, Anhembi-São Paulo (Nota). Ararajuba 11(1): 101-102.
- Antunes, A. Z.; Eston, M. R. 2009. Mamíferos (Chordata: Mammalia) florestais de médio e grande porte registrados em Barreiro Rico, Anhembi, Estado de São Paulo. Revista do Instituto Florestal 21: 201-215.
- Araujo, C. O.; Almeida-Santos, S. M. 2013. Composição, riqueza e abundância de anuros em um remanescente de Cerrado e Mata Atlântica no estado de São Paulo. Biota Neotropica 13(1): 265-275.
- Araujo, C. O.; Almeida-Santos, S. M. 2011. Herpetofauna de um remanescente de Cerrado no estado de São Paulo. Biota Neotropica 11(3): 47-62.
- Araujo, C. O. et al. 2010. Amphibians and reptiles of the Parque Estadual Turístico do Alto Ribeira (PETAR), SP: an Atlantic Forest remnant of southeastern Brazil. Biota Neotropica 10(4): 257-274.
- Araujo, C. O.; Condez, T. H.; Sawaya, R. J. 2009. Anfíbios anuros do Parque Estadual das Furnas do Bom Jesus, sudeste do Brasil, e suas relações com outras taxocenoses no Brasil. Biota Neotropica 9(2): 77-98.
- Araujo, C. O.; Corrêa, D. T.; Almeida-Santos, S. M. 2013. Anuros da Estação Ecológica de Santa Bárbara, um remanescente de formações abertas de Cerrado no estado de São Paulo. Biota Neotropica 13(3): 230-240.

- Araujo, C. O. et al. 2014. Lizards from Estação Ecológica de Santa Bárbara, a remnant of Cerrado in the state of São Paulo, Brazil. Check List 10(5): 1038-1043.
- Araujo, C. O. 2017. Herpetofauna da Estação Ecológica de Bauru, um fragmento de Mata Atlântica no estado de São Paulo, Brasil. Revista do Instituto Florestal 29(1): 71-89.
- Ávila-Pires, T. C. 1995. Lizards of Brazilian Amazonia (Reptilian: Squamata). Zool. Verh. 299: 1-706.
- Becker, C. G. et al. 2007. Habitat split and the global decline of amphibians. Science 5857(318): 1775-1777.
- Bicca-Marques, J. C. et al. 2017. Yellow fever threatens Atlantic Forest primates. Science Advances 3(1): e1600946.
- Bonino, N.; Cossíos, D.; Menegheti, J. 2010. Dispersal of the European hare, *Lepus europaeus* in South America. Folia Zool. 59(1): 9-15.
- Bovo, A. A. 2013. [WA1422147, *Bubo virginianus* (Gmelin, 1788)]. Wiki Aves A Enciclopédia das Aves do Brasil. Disponível em: http://www.wikiaves.com/1422147> Acesso em: 08 Jun 2018.
- Brassaloti, R. A.; Rossa-Feres, D. C.; Bertoluci, J. 2010. Anurofauna da Floresta Estacional Semidecidual da Estação Ecológica dos Caetetus, sudeste do Brasil. Biota Neotropica 10(1): 275-292.
- Bucci, D. 2018. [WA2931344, *Riparia riparia* (Linnaeus, 1758)]. Wiki Aves A Enciclopédia das Aves do Brasil. Disponível em: http://www.wikiaves.com/2931344> Acesso em: 08 Jun 2018.
- Campbell, J. A.; Lamar, W. W. 2004. The Venomous Reptiles of the Western Hemisphere. Ithaca: Cornell University Press.
- Catel, A. C. 2017. [WA2691161, *Griseotyrannus aurantioatrocristatus* (d'Orbigny & Lafresnaye, 1837)]. Wiki Aves A Enciclopédia das Aves do Brasil. Disponível em: http://www.wikiaves.com/2691161 > Acesso em: 08 Jun 2018.
- Cipriani, F. 2012. [WA786337, *Tachycineta leucopyga* (Meyen, 1834)]. Wiki Aves A Enciclopédia das Aves do Brasil. Disponível em: http://www.wikiaves.com/786337> Acesso em: 08 Jun 2018.
- Costa, H. C.; Bérnils, R. S. 2018. Répteis do Brasil e suas unidades federativas: lista de espécies. Herpetologia Brasileira 8(1): 11-57.
- Costa, M. D.; Fernandes, F. A. B. 2010. Primeiro registro de *Lepus europaeus* Pallas, 1778 (Mammalia, Lagomorpha, Leporidae) no sul do Estado de Minas Gerais e uma síntese dos registros conhecidos para o sudeste do Brasil. Revista Brasileira de Zoociências 12(3): 311-314.
- Costa, V. A. 2015. [WA1964757, *Sporophila collaris* (Boddaert, 1783)]. Wiki Aves A Enciclopédia das Aves do Brasil. Disponível em: http://www.wikiaves.com/1964757> Acesso em: 08 Jun 2018.
- Costa, V. A. 2016. [WA2325160, *Parabuteo unicinctus* (Temminck, 1824)]. Wiki Aves A Enciclopédia das Aves do Brasil. Disponível em: http://www.wikiaves.com/2325160> Acesso em: 08 Jun 2018.

- Cullen Jr., L.; Bodmer, R. E.; Valladares-Pádua, C. 2000. Effects of hunting in habitat fragments of the Atlantic forest, Brazil. Biol. Conserv. 95(1): 49-56.
- d'Horta, F. M. et al. 2013. Fauna Terrestre. Estudo de Impacto Ambiental EIA para o processo de licenciamento ambiental do Aproveitamento Múltiplo Santa Maria da Serra. São Paulo: Secretaria Estadual de Logística e Transportes, Departamento Hidroviário.
- Dixo, M.; Fuentes, R. A. G.; Brisolla, G. 2006. Anfíbios e répteis. p. 138-146. In: H. H. Faria, A. S. Pires (Orgs). Parque Estadual do Morro do Diabo: plano de manejo. Santa Cruz do Rio Pardo: Viena.
- Duarte, J. M. B.; Vogliotti, A. 2009. *Mazama americana* (Erxleben, 1777) Artiodactyla, Cervidae. p. 66. In: P.M. Bressan, M.C. Kierulff e A.M. Sugieda (Orgs). Fauna ameaçada de extinção no Estado de São Paulo: Vertebrados. São Paulo: Secretaria do Meio Ambiente.
- Durigan, G. et al. 2004. A flora arbustivo-arbórea do Médio Paranapanema: base para a restauração dos ecossistemas naturais. p. 199-239. In: O. Vilas-Boas, G. Durigan (Orgs). Pesquisas em conservação e recuperação ambiental no Oeste Paulista: resultados da cooperação Brasil/Japão. São Paulo: Páginas e Letras.
- Fazenda Bacury. 2018. Fotos e vídeos de mamíferos e aves. Disponível em: http://www.bacury.com/. Acesso em: 27 Jun. 2018.
- Figueiredo, C. C. 2012. Levantamento de lagartos (Squamata, Sauria) na Floresta Estadual de Pederneiras (SP). Trabalho de Conclusão de Curso Centro de Ciências da Saúde, Universidade do Sagrado Coração, Bauru. 35 f.
- Figueiredo, L. F. A. 2017. Lista de aves do estado de São Paulo. Versão: 24/06/2017. Disponível em: http://www.ceo.org.br. Acesso em: 08 Jun. 2018.
- Forlani, M. C. et al. 2010. Herpetofauna of the Carlos Botelho State Park, São Paulo state, Brazil. Biota Neotropica 10(3): 266-309.
- Frezza, S. 2015. [WA1573974, Serpophaga nigricans (Vieillot, 1817)]. Wiki Aves A Enciclopédia das Aves do Brasil. Disponível em: http://www.wikiaves.com/1573974> Acesso em: 08 Jun 2018.
- Frost, D. R. 2018. Amphibian species of the world: an online reference, version 6.0. New York: American Museum of Natural History. Disponível em: http://research.amnh.org/vz/herpetology/amphibia. Acesso em: 28 junho 2018.
- Galleti, M. et al. 2009. Priority areas for the conservation of Atlantic Forest large mammals. Biol. Conserv., 142(6): 1229-1241.
- Galetti, M. et al. 2016. Liquid lunch vampire bats feed on invasive feral pigs and other ungulates. Frontiers in Ecology and the Environment 14:505-506.
- Gascon, C. et al. 2015. The Importance and Benefits of Species. Current Biology 25: R431–R438.
- Haddad, C. F. B. et al. 2013. Guia dos anfíbios da Mata Atlântica: diversidade e biologia. São Paulo: Anolis Books.
- Hanski, I. 1998. Metapopulation dynamics. Nature 396(6706): 41-49.

- Instituto Hórus de Desenvolvimento e Conservação Ambiental. 2018. Base de dados nacional de espécies exóticas invasoras I3N Brasil. Disponível em: http://i3n.institutohorus.org.br/www. Acesso em: 08 Jun. 2018.
- International Union for Conservation of Nature IUCN. 2018. The IUCN Red List of Threatened Species. Disponível em: http://www.iucnredlist.org/. Acesso em: 29 Maio 2018.
- Langeani, F. et al. 2007. Diversidade da ictiofauna do Alto Rio Paraná: composição atual e perspectivas futuras. Biota Neotrop. 7(3): 181-197.
- Leitão-Filho, H. F. 1987. Considerações sobre a florística de florestas tropicais e subtropicais do Brasil. Instituto de Pesquisa de Estudos Florestais 35: 41-46.
- Lima, L. M. 2013. Aves da Mata Atlântica: riqueza, composição, status, endemismos e conservação. São Paulo: Instituto de Biociências, Universidade de São Paulo. Dissertação de Mestrado em Zoologia.
- Maffei, F. et al. 2015. Anurans of the Agudos and Jaú municipalities, state of São Paulo, Southeastern Brazil. Check List 11(3): 1-7.
- Maffei, F.; Ubaid, F. K.; Jim, J. 2011. Anfíbios: Fazenda Rio Claro, Lençóis Paulista, SP, Brasil. Bauru: Canal6.
- Magalhães, J. C. R. 1999. As Aves na Fazenda Barreiro Rico. São Paulo, Editora Plêiade.
- Martins, M. M. 2005. Density of primates in four semi-deciduous forest fragments of São Paulo, Brazil. Biodiversity and Conservation 14(10): 2321-2329.
- Maruyama, L. S. 2007. A pesca artesanal no Médio e Baixo Tietê (São Paulo, Brasil): aspectos estruturais, sócio-econômicos e de produção pesqueira. Dissertação (mestrado) apresentada ao Instituto de Pesca, Secretaria de Agricultura e Abastecimento Agência Paulista de Tecnologia dos Agronegócios, São Paulo, 109f.
- Maruyama, L. S.; Castro, P. M. G.; Paiva, P. 2009. A pesca artesanal no Médio e Baixo Tietê, São Paulo, Brasil: aspectos estruturais, sócio-econômicos. Bol. Inst. Pesca 35(1): 61-81.
- Menezes, N.A.; Wosiacki, W.B.; Melo, M.R.S. 2018. Actinopteri in Catálogo Taxonômico da Fauna do Brasil. PNUD. Disponível em: http://fauna.jbrj.gov.br/fauna/faunadobrasil/23>. Acesso em: 29 Maio 2018.
- Ministério do Meio Ambiente MMA. 2014. Lista nacional das espécies da fauna brasileira ameaçadas de extinção. Brasília. Diário Oficial da União. 245. Seção 1. Publicado em 18/12/2014. Disponível em: www.mma.gov.br/port/sbf/fauna/index.cfm. Acesso em: 29 Maio 2018.
- Moraes, F. D. 2018. [WA2884393, *Paroaria dominicana* (Linnaeus, 1758)]. Wiki Aves A Enciclopédia das Aves do Brasil. Disponível em: http://www.wikiaves.com/2884393 Acesso em: 08 Jun 2018.
- Motta-Júnior, J. C., Granzinolli, M. A. M., Develey, P.F. 2008. Aves da Estação Ecológica de Itirapina, estado de São Paulo, Brasil. Biota Neotrop. 8(3):207–227.

- Nogueira, C. C. 2006. Diversidade e padrões de distribuição da fauna de lagartos do Cerrado. Tese (Doutorado em Ecologia) Instituto de Biociências, Universidade de São Paulo, São Paulo. 295 f.
- Oliveira, A. C. et al. 2016. Relatório anual de rotas e áreas de concentração de aves migratórias no Brasil. Cabedelo, PB: CEMAVE/ ICMBio.
- Oyakawa, O. T. et al. 2009. Peixes de água doce. In: P. M. Bressan, M. C. Kierulff, A. M. Sugieda (Eds). Fauna ameaçada de extinção no Estado de São Paulo: vertebrados. São Paulo: Fundação Parque Zoológico de São Paulo, Secretaria do Meio Ambiente.
- Panucci, G. P. 2012. [WA739924, *Cathartes burrovianus* Cassin, 1845]. Wiki Aves A Enciclopédia das Aves do Brasil. Disponível em: http://www.wikiaves.com/739924> Acesso em: 08 Jun 2018.
- Panucci, G. P. 2014. [WA1315482, *Knipolegus lophotes* Boie, 1828]. Wiki Aves A Enciclopédia das Aves do Brasil. Disponível em: http://www.wikiaves.com/1315482> Acesso em: 08 Jun 2018.
- Parker, M. L.; Goldstein, M. I. 2000. Differential toxicities of organophosphate and carbamate insecticides in the nestling European Starling (*Sturnus vulgaris*). Arch. Environ. Contam. Toxicol. 39(2):233-242.
- Pedrosa, F. et al. 2015. Current distribution of invasive feral pigs in Brazil: economic impacts and ecological uncertainty. Natureza & Conservação 13(1):84–87.
- Percequillo, A.R.; Gregorin, R. 2018. Mammalia in Catálogo Taxonômico da Fauna do Brasil. PNUD. Disponível em: http://fauna.jbrj.gov.br/fauna/faunadobrasil/64>. Acesso em: 08 Jun. 2018.
- Percequillo, A.R.; Hingst-Zaher, E.; Bonvicino, C.R. 2008. Systematic review of genus *Cerradomys* Weksler, Percequillo and Voss, 2006 (Rodentia: Cricetidae: Sigmodontinae: Oryzomyini), with description of two new species from eastern Brazil. American Museum Novitates 3622: 1-46.
- Petesse, M. L., Petrere Jr., M., Spigolon, R. J. 2007. The hydraulic management of the Barra Bonita reservoir (SP, Brazil) as a factor influencing the temporal succession of its fish community. Braz. J. Biol. 67(3): 433-445.
- Piacentini, V.Q. et al. 2017. Aves in Catálogo Taxonômico da Fauna do Brasil. PNUD. Disponível em: http://fauna.jbrj.gov.br/fauna/faunadobrasil/135125. Acesso em: 08 Jun. 2018.
- Pinto, G. G. 2017. [WA2725724, *Oxyura vittata* (Philippi, 1860)]. Wiki Aves A Enciclopédia das Aves do Brasil. Disponível em: http://www.wikiaves.com/2725724> Acesso em: 08 Jun 2018.
- Rivero, V. M. C. et al. 2013. Ictiofauna. Estudo de Impacto Ambiental EIA para o processo de licenciamento ambiental do Aproveitamento Múltiplo Santa Maria da Serra. São Paulo, Secretaria Estadual de Logística e Transportes, Departamento Hidroviário.
- Robinson, V.; Pizo, M. A. 2017. A floodplain with artificially reversed flood pulse is important for migratory and rare bird species. Revista Brasileira de Ornitologia 25(3): 155–168.

- Rodrigues, L. M. 2016. [WA2348018, *Progne subis* (Linnaeus, 1758)]. Wiki Aves A Enciclopédia das Aves do Brasil. Disponível em: http://www.wikiaves.com/2348018> Acesso em: 08 Jun 2018.
- Rossa-Feres, D. C. et al. 2011. Anfíbios do estado de São Paulo, Brasil: conhecimento atual e perspectivas. Biota Neotropica 11(1a): 1-19.
- Santos T. G. et al. 2009. Anurans of a seasonally dry tropical forest: Morro do Diabo State Park, São Paulo state, Brazil. Journal of Natural History 43(15-16): 973-993.
- São Paulo (Estado). 2014. Decreto Estadual No 60.133 de 7 de fevereiro de 2014. Declara as espécies da fauna silvestre ameaçadas de extinção, as quase ameaçadas e as deficientes de dados para avaliação no Estado de São Paulo e dá providencias correlatas. Diário Oficial do Estado de São Paulo, São Paulo, seção 1, 124 (27).
- Sawaya, R. J.; Marques, O. A. V.; Martins, M. 2008. Composition and natural history of a Cerrado snake assemblage at Itirapina, São Paulo State, southeastern Brazil. Biota Neotropica 8(2): 129-151.
- Sazima, I. 1992. Natural history of the jararaca pitviper, *Bothrops jararaca*, in southeastern Brazil. p. 199-216. In: J. A. Campbell, E. D. Brodie (Orgs). Biology of the pitvipers. Tyler: Selva.
- Segalla, M. V. et al. 2016. Brazilian amphibians: list of species. Herpetologia Brasileira 5(2): 34-46.
- Serrano-filho, S. 2012. Diversidade e distribuição dos lagartos de uma área de ecótono entre Cerrado e Mata Atlântica no sudeste do Brasil. Dissertação (Mestrado em Biologia Animal) Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto. 53 f.
- Shackleton, C. M. et al. 2016. Unpacking Pandora's Box: Understanding and Categorising Ecosystem Disservices for Environmental Management and Human Wellbeing. Ecosystems 19(4): 587-600.
- Sistema de Informação sobre a Biodiversidade Brasileira SiBBr. 2018. Disponível em: http://www.sibbr.gov.br/>. Acesso em: 08 Jun. 2018.
- Somenzari, M. et al. 2018. An overwiew of migratory birds in Brazil. Papéis Avulsos de Zoologia 58: 1-66, e20185803.
- Species Link. 2018. Sistema de informação distribuído para recuperação de dados de acervos de coleções biológicas e de observação em campo. Disponível em: http://www.splink.cria.org.br/. Acesso em: 08 Jun. 2018.
- Thomé, M. T. C. 2006. Diversidade de anuros e lagartos em fisionomias de Cerrado na região de Itirapina, sudeste do Brasil. Dissertação (Mestrado em Ecologia) Instituto de Biociências, Universidade de São Paulo, São Paulo. 52 f.
- Torres-de-Assumpção, C. 1983. An ecological study of primates in southeastern Brazil, with a reappraisal of *Cebus apella* races. Doctoral thesis, University of Edinburgh, Edinburgh, UK.
- Uetanabaro, M. et al. 2008. Guia de campo dos anuros do Pantanal e planaltos de entorno. Campo Grande; Cuiabá: UFMS; UFMT.

- Valdujo, P. H. et al. 2011. Anfíbios da Estação Ecológica Serra Geral do Tocantins, região do Jalapão, estados do Tocantins e Bahia. Biota Neotropica 11(1): 251-262.
- Valdujo, P. H. et al. 2012. Anuran species composition and distribution patterns in Brazilian Cerrado, a neotropical hotspot. South American Journal of Herpetology 7(2): 63-78.
- Vanzolini, P. E. 1978. On South American Hemidactylus mabouia (Sauria-Gekkonidae). Papéis Avulsos de Zoologia 31(20): 307-343.
- Vanzolini, P. E.; Ramos-Costa, A. M. M.; Vitt, L. J. 1980. Répteis das Caatingas. Rio de Janeiro: Academia Brasileira de Ciências.
- Vasconcelos, T. S.; Rodríguez, M. A.; Hawkins, B. A. 2011. Biogeographic distribution patterns of South American amphibians: a regionalization based on cluster analysis. Natureza & Conservação 9(1): 67-72.
- Vazzoler, A. E.; Menezes, N. A. 1992. Síntese de conhecimentos sobre o comportamento reprodutivo dos Characiformes da América do Sul (Teleostei, Ostariophysi). Rev. Brasil. Biol. 52(4): 627-640.
- VertNet. 2018. VertNet: distributed databases with backbone. http://vertnet.org/>. Acesso em: 08 Jun. 2018.
- WikiAves. 2018. WikiAves, a Enciclopédia das Aves do Brasil. Disponível em: http://www.wikiaves.com.br/. Acesso em: 08 Jun. 2018.
- Willis, E. O. 1979. The composition of avian communities in remanescent woodlots in southern Brazil. Pap. Avuls. Zool. 33:1-25.
- Willis, E. O.; Oniki, Y. 2003. Aves do Estado de São Paulo. Rio Claro: Divisa.
- Wrigth, J. P.; Jones, C. G. 2006. The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. BioScience, v. 56(3): 203-209.
- Xeno-Canto. 2018. Xeno-canto: Compartilhando sons de aves do mundo todo. Disponível em: http://www.xeno-canto.org/>. Acesso em: 08 Jun. 2018.

HIDROLOGIA SUPERFICIAL

- COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL CETESB. Relatório de qualidade das águas interiores do estado de São Paulo 2013. São Paulo, 2014. Disponível em: http://cetesb.sp.gov.br/publicacoes-relatorios/>. Acesso em: 06 jun. 2018.
- COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL CETESB. Relatório de qualidade das águas interiores do estado de São Paulo 2014. São Paulo, 2015. Disponível em: http://cetesb.sp.gov.br/publicacoes-relatorios/>. Acesso em: 06 jun. 2018.
- COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL CETESB. Relatório de qualidade das águas interiores do estado de São Paulo 2015. São Paulo, 2016. Disponível em: http://cetesb.sp.gov.br/publicacoes-relatorios/>. Acesso em: 06 jun. 2018.

- COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL CETESB. Relatório de qualidade das águas interiores do estado de São Paulo 2016. São Paulo, 2017. Disponível em: http://cetesb.sp.gov.br/publicacoes-relatorios/>. Acesso em: 06 jun. 2018.
- HEWLETT, J. D. **Principles of forest hydrology**. Athens: The University of Georgia Press, 1982. 183 p.
- COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL CETESB. Relatório de qualidade das águas interiores do estado de São Paulo 2017. São Paulo, 2018. Disponível em: http://cetesb.sp.gov.br/publicacoes-relatorios/>. Acesso em: 28 jun. 2018.
- INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA IBGE. **Cidades IBGE**. Brasília, 2018. Disponível em: https://cidades.ibge.gov.br/ Acesso em: 25 maio 2018.
- ENGENHARIA E CONSULTORIA EM RECURSOS HÍDRICOS IRRIGART. Relatório da Situação dos Recursos Hídricos das Bacias PCJ 2017. Piracicaba: 2017. Disponível em: http://www.agenciapcj.org.br/novo/instrumentos-degestao/relatorios-de-situacoes>. Acesso em: 07 jun. 2017.
- NOVOTNY, V. Water quality diffuse pollution and watershed management.2nd. Ed. New York:John Wiley and Sons, 2003.
- ROLIM, G. S.; SENTELHAS, P. C.; BARBIERI, V. Planilhas no ambiente EXCEL para os cálculos de balanços hídricos: normal, seqüencial, de cultura e de produtividade real e potencial. **Revista Brasileira de Agrometeorologia**, Santa Maria, v. 6, p. 133-137, 1998.
- THORNTHWAITE, C. W.; MATHER, J. R. **The water balance.** New Jersey: Drexel Institute of Technology, 1955. 104 p. (Publications in Climatology).
- RIO PIRACICABA (SÃO PAULO). In: Wikipédia: a enciclopédia livre. Disponível em: https://pt.wikipedia.org/wiki/Rio_Piracicaba_(S%C3%A3o_Paulo) Acesso em: 13 jun. 2018.

GEOMORFOLOGIA, PERIGO, VULNERABILIDADE, RISCOS

- CÔRTES, Ariane Raissa Pinheiro; PERINOTTO, José Alexandre de Jesus. Fácies e associação de fácies da Formação Piramboia na região de Descalvado (SP). Geologia USP. Série Científica, São Paulo, v. 15, n. 3-4, p. 23-40, dec. 2015. ISSN 2316-9095. Disponível em: http://www.revistas.usp.br/guspsc/article/view/110242 . Acesso em: 05 jul 2018. doi: http://dx.doi.org/10.11606/issn.2316-9095.v15i3-4p23-40 .
- CPRM (Companhia de Pesquisa de Recursos Minerais). Mapa Geológico do Estado de São Paulo na escala de apresentação 1:750.000. 2006. Programa Geologia do Brasil Integração, Atualização e Difusão de Dados da Geologia do Brasil. Disponível em: http://geowebapp.cprm.gov.br/ViewerWEB/ . Consultado em: 10 abr 2018.
- EMPLASA. 2010. Arquivos digitais do modelo digital de superfície do Projeto de Atualização Cartográfica do Estado de São Paulo "Projeto Mapeia São Paulo". Produtos de levantamento aerofotogramétrico de 2010-2011. Titularidade:

- Empresa Paulista de Planejamento Metropolitano S/A EMPLASA. Contrato de Licença de Uso 038/12, estabelecido entre EMPLASA e SMA.
- ROSS, J. L. S.; MOROZ, I. C. Mapa geomorfológico do Estado de São Paulo. São Paulo, DG- FFLCH USP, IPT, FAPESP, 1997.
- SÃO PAULO. Sistema de Classificação Unidades Territoriais Básicas do Estado de São Paulo. Instituto Geológico, Secretaria do Meio Ambiente: Estado de São Paulo. 2017. **Arquivos digitais em formatos shapefile e pdf**. Disponível em: https://goo.gl/MeFU3K. Consultado em: 09 abr 2018.

SOLOS E FRAGILIDADE AMBIENTAL

- ALMEIDA, F. et al. **Nota Explicativa do Mapa Geológico do Estado de São Paulo**. Volume I. São Paulo: Instituto de Pesquisas Tecnológicas, 1981.
- BISTRICHI, C.A. et al. 1981. Mapa geológico do Estado de São Paulo; escala 1:500.000. In: ALMEIDA, F.F.M. de *Mapa Geológico do Estado de São Paulo*; 1: 500.000, texto. São Paulo, IPT, 2v. IPT- Publicação 1184, SérieMonografias 6.
- BURINGH, P. The applications of aerial photographs in soil surveys. In: AMERICAN SOCIETY OF PHOTOGRAMMETRY. Manual of Photografic Interpretation, Washington, 1960.Chap. 11, appendix A. p. 633-666.
- CINTRA, L. M. ;ROSSI, M.; KANASHIRO, M.M. Estudo dos solos como subsídio para conservação da biodiversidade naSerra do Japi, São Paulo. In: 10 Seminário de Iniciação Científica do Instituto Florestal, 2016, São Paulo. *Anais* do 10 Seminário de Iniciação Científica do Instituto Florestal. São Paulo: Instituto Florestal, 2016. v. 1. p. 1-1.
- GUERRA, A.J.T.; SILVA, A.S. da; BOTELHO, R.G.M. (Org.). Erosão e Conservação dos Solos. Rio de Janeiro: Bertrand Brasil, 1999. 1ª ed., 340p.
- KERTZMAN, F.F.; OLIVEIRA,A.M.S.; SALOMÃO, F.X.T.; GOUVEIA, M.I.F.**Mapa de erosão do estado de São Paulo.Revista do Instituto Geológico**, São Paulo, v. 16, n., p.31-36, 1995.
- LANDIM et al., 1982. Mapa Geológico do Estado de São Paulo: Folha de CAMPINAS, escala 1:250.000. Convênio DAEE/UNESP. Mapas.
- LANDIM et al., 1984. Mapa Geológico do Estado de São Paulo: Folha de BAURU, escala 1:250.000. Convênio DAEE/UNESP. Mapas.
- MATTOS, I.F.A. et al. Levantamento do Meio Físico e Avaliação da Fragilidade do Ecossistema na Estação Ecológica dos Caetetus SP. Sociedade Natureza. Revista do Departamento de Geografia Universidade Federal de Uberlândia, Uberlândia, v. 8, n. 15, p. 388-393, 1996.
- NAKASAWA, V.A. (Coord); FREITAS, C.G.L. de; DINIZ, N.C. **Carta Geotécnica do Estado de São Paulo: Escala 1:500.000**. São Paulo: Instituto de Pesquisas Tecnológicas (IPT), 1ª ed., 1994.
- OLIVEIRA, J.B. **Pedologia Aplicada**. 4ª ed. Piracicaba-São Paulo: Fealq, 2008, 592p.

- OLIVEIRA, J.B.; PRADO, H. BEJAR, O.I.G.; OLIVEIRA, E.R.; LONGOBARDI, R.C. & ASSIS, E. A. <u>Carta pedológica semidetalhado do Estado de São Paulo</u>: Folha de Piracicaba. São Paulo, Secretaria da Agricultura/CPC/IA; Secretaria de Economia e Planejamento/CAR/IGC. 1987. (Mapa, escala 1:100.000).
- OLIVEIRA, J.B. de; CAMARGO, M.N.de; ROSSI, M. & CALDERANO FILHO, B. 1999. <u>Mapa pedológico do Estado de São Paulo: legenda expandida</u>. Campinas: Instituto Agronômico/EMBRAPA Solos, 1999. v. 1. 64 p. (inclui Mapa, escala 1:500.000).
- PERROTTA, M. M., SALVADOR, E. D.; LOPES, R. C.; D'AGOSTINO, L. Z.; PERUFFO, N.; GOMES, S.D.; SACHS, L.L.B.; MEIRA, V.T. e LACERDA FILHO, F.V. 2005 Mapa Geológico do Estado de São Paulo, escala 1: 750.000. Programa Levantamentos Geológicos Básicos do Brasil, CPRM, São Paulo.
- PONÇANO, W. L.; CARNEIRO, C. D. R.; BISTRICHI, C. A.; ALMEIDA, F. F. M. de.; PRANDINI, F. L. 1981 <u>Mapa geomorfológico do Estado de São Paulo</u>. São Paulo. Instituto de Pesquisas Tecnológicas do Estado de São Paulo. Monografia 5. v. 1 e 2. Escala 1:1.000.000.
- ROSS, J.L.S. 1990. **Geomorfologia: ambiente e planejamento. O relevo no quadro ambiental, cartografia geomorfológica e diagnósticos ambientais**. Coleção Repensando a Geografia. São Paulo: Contexto, 1990. 85 p.
- ROSS, J.L. S. & MOROZ, I.C. <u>Mapa geomorfológico do Estado de São Paulo</u>. São Paulo. Laboratório de Geomorfologia, Departamento de Geografia-FFLCH-USP/Laboratório de Cartografia Geotécnica-Geologia Aplicada-IPT/FAPESP-Fundação de Amparo a Pesquisa do Estado de São Paulo. 1997.
- ROSSI, M.; KANASHIRO, M.M.; SANTOS, L. G.; VELLARDI, J. W. V. Diagnóstico do meio físico da Fazenda Santa Carlota: solos. IF, v. 52, p. 7-27, 2014.
- ROSSI, M. 2017. Mapa pedológico do Estado de São Paulo: revisado e ampliado. São Paulo: Instituto Florestal, 2017. V.1. 118p. (inclui Mapas).
- SECRETARIA ESTADUAL DE LOGÍSTICA E TRANSPORTES. EIA/RIMA: Aproveitamento Múltiplo Santa Maria da Serra. São Paulo, Vol. II, VII e X. 2013.
- ZORNOFF, D.R.; ROSSI, M.; KANASHIRO, M.M. Estudo do meio físico como subsídio para criação de Unidade de Conservação (UC) em Peruíbe-Itanhaém. In: XIII encuentro de geógrafos de america latina, 2011, San José. *Annais* do XIII encuentro de geógrafos de américa latina. San José: Universidad Nacional Costa Rica/Universidade da Costa Rica, 2011. p. 1-12.

SOCIOECONOMIA

- FUNDAÇÃO SISTEMA ESTADUAL DE ANÁLISE DE DADOS (SEADE). Informações dos Municípios Paulistas. São Paulo: Seade, 2017. Disponível em: http://www.seade.gov.br/produtos/imp Acesso em junho 2018.
- SÃO PAULO (Estado). Secretaria do Meio Ambiente. Meio ambiente paulista: relatório de qualidade ambiental 2017 / Secretaria do Meio Ambiente do Estado de São Paulo, Coordenadoria de Planejamento Ambiental; Equipe técnica Aline Bernardes Candido...(et al.). 1ª ed. São Paulo: SMA, 2017

CONCLUSÕES

- BRASIL. Lei nº 9.985, de 18 de julho de 2000. (2000). Regulamenta o art. 225, § 10, incisos I, II, III e VII da Constituição Federal, institui o Sistema Nacional de Unidades de Conservação da Natureza e dá outras providências. Acessado em 30/7/2018 de http://www.planalto.gov.br/ccivil-03/Leis/L9985.htm
- FERNANDES, Ana Paula Donicht et al. (2017). Modalidades de gestão do Sistema Nacional de Unidades de Conservação: Estudo de Caso nos Faixinais do Município de Mandirituba, PR. FLORESTA, v. 47, n. 4, p. 459-468.
- SÃO PAULO (Estado). Secretaria de Meio Ambiente (2010). Criação de Sistema de Áreas Protegidas do Contínuo da Cantareira: Serras do Itaberaba e Itapetinga. Relatório Final Volume Principal. 229 p., 2010.
- SECRETARIA DO MEIO AMBIENTE DE SÃO PAULO. (2018). ICMS Ecológico. Disponível em http://www2.ambiente.sp.gov.br/cpla/icms-ecologico.